[1] Blaser, Hans U. A golden boost to an old reaction[J]. Science, 2006, 313(5785): 312-313.
[2] Corma A, Concepcion P, Serna P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts[J]. Angewandte Chemie International Edition, 2007, 46(38): 7266-7269.
[3] Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts[J]. Science, 2006, 313(5785): 332-334.
[4] Gao P, Gosztola D, Weaver M J. Surface-enhanced raman-spectroscopy as a probe of electroorganic reaction pathways.1.processes involving adsorbed nitrobenzene, azoben-
zene, and related species[J]. Journal of Physical Chemistry, 1988, 92(25): 7122-7130.
[5] Shi C T, Wei Z, Birke R L, et al. Detection of short-lived intermediates in electrochemical reactions using time-resolved surface-enhanced Raman-spectroscopy[J]. Journal of Physical Chemistry, 1990, 94(12): 4766-4769.
[6] Shi C T, Zhang W, Birke R L, et al. Time-resolved SERS, cyclic voltammetry, and digital-simulation of the electroreduction of para-nitrobenzoic acid[J]. Journal of Physical Chemistry, 1991, 95(16): 6276-6285.
[7] Sun S C, Birke R L, Lombardi J R, et al. Photolysis of para-nitrobenzoic acid on roughened silver surfaces[J].Journal of Physical Chemistry, 1988, 92(21): 5965-5972.
[8] Haber F. About gradual reduction of the nitrobenzene with limited cathode potential. Z[J]. Elecktrochem, 1898, 4: 506-513.
[9] Haber F, Schmidt C. On the reduction procedure in the electrical reduction of nitrobenzol[J]. Zeitschrift fur phy-sikalische chemie--stochiometrie und verwandtschaftslehre, 1900, 32(2): 271-287.
[10] Zhao L B, Chen J L, Zhang M, et al. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces[J]. Journal of Physical Chemistry C, 2015, 119(9): 4949-4958.
[11] Medard C, Morin M. Chemisorption of aromatic thiols onto a glassy carbon surface[J]. Journal of Electroanalytical Chemistry, 2009, 632(1/2): 120-126.
[12] Nielsen J U, Esplandiu M J, Kolb D M. 4-nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS[J]. Langmuir, 2001, 17(11): 3454-3459.
[13] Tsutsumi H, Furumoto S, Morita M, et al. Electrochemical-behavior of a 4-nitrothiophenol modified electrode prepared by the self-assembly method[J]. Journal of Colloid and Interface Science, 1995, 171(2): 505-511.
[14] Futamata M. Application of attenuated total reflection surface-plasmon-polariton Raman spectroscopy to gold and copper[J]. Applied Optics, 1997, 36(1): 364-375.
[15] Futamata M. Surface-plasmon-polariton-enhanced raman-
scattering from self-assembled monolayers of p-nitrothiophenol and p-aminothiophenol on silver[J]. Journal of Physical Chemistry, 1995, 99(31): 11901-11908.
[16] Matsuda N, Sawaguchi T, Osawa M, et al. Surface-assisted photoinduced reduction of p-nitrothiophenol self-assembled monolayer adsorbed on a smooth silver electrode[J]. Chemistry Letters, 1995, 24(2): 145-146.
[17] Matsuda N, Yoshii K, Ataka K, et al. Surface-enhanced infrared and raman studies of electrochemical reduction of self-assembled monolayers formed from para-nitrohiophenol at silver[J]. Chemistry Letters, 1992, 21(7): 1385-1388.
[18] Kim K, Lee S J, Kim K L. Surface-enhanced Raman scattering of 4-nitrothioanisole in Ag sol[J]. Journal of Physical Chemistry B, 2004, 108(41): 16208-16212.
[19] Zhu T, Yu H Z, Wang Y C, et al. Irreversible adsorption and reduction of p-nitrothio-phenol monolayers on gold: Electrochemical in situ surface enhanced Raman spectroscopy[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A - Molecular Crystals and Liquid Crystals, 1999, 337(1): 241-244.
[20] Futamata M, Nishihara C, Goutev N. Electrochemical reduction of p-nitrothiophenol-self-assembled monolayer films on Au(111) surface and coadsorption of anions and water molecules[J]. Surface Science, 2002, 514(1/3): 241-248.
[21] Zong C, Chen C J, Zhang M, et al. Transient electrochemical surface-enhanced raman spectroscopy: A millisecond time-resolved study of an electrochemical redox process[J]. Journal of the American Chemical Society, 2015, 137(36): 11768-11774.
[22] Hartman T, Wondergem C S, Kumar N, et al. Surface- and tip-enhanced raman spectroscopy in catalysis[J]. Journal of Physical Chemistry Letters, 2016, 7(8): 1570-1584.
[23] Lin T W, Tasi T T, Chang P L, et al. Reversible association of nitro compounds with p-nitrothiophenol modified on Ag nanoparticles/graphene oxide nanocomposites through plasmon mediated photochemical reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8315-8322.
[24] Kang L L, Han X J, Chu J Y, et al. In situ surface-enhanced raman spectroscopy study of plasmon-driven catalytic reactions of 4-nitrothiophenol under a controlled atmosphere[J]. ChemCatChem, 2015, 7(6): 1004-1010.
[25] Kang L, Xu P, Zhang B, et al. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy[J]. Chemical Communications, 2013, 49(33): 3389-3391.
[26] Ling Y, Xie W C, Liu G K, et al. The discovery of the hydrogen bond from p-nitrothiophenol by Raman spectroscopy: Guideline for the thioalcohol molecule recognition tool[J]. Scientific Reports, 2016, 6: 31981.
[27] Ling Y, Xie W C, Wang W L, et al. Direct observation of 4-nitrophenyl disulfide produced from p-nitrothiophenol in air by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2018, 49(3): 520-525.
[28] Wu Y F(吴元菲), Pang R(庞然), Zhang M(张檬), et al. Theoretical study of photoelectrochemical reactions and EC-SERS on SPR metallic electrodes of silver and gold[J]. Journal of Electrochemistry(电化学), 2016, 22(4): 356-367.
[29] Zhao L B, Zhang M, Huang Y F, et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds[J]. Journal of Physical Chemistry Letters, 2014, 5(7): 1259-1266.
[30] Zhang Z L, Deckert-Gaudig T, Singh P, et al. Single molecule level plasmonic catalysis - a dilution study of p-nitrothiophenol on gold dimers[J]. Chemical Communications, 2015, 51(15): 3069-3072. |