电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 683-693. doi: 10.13208/j.electrochem.200648
收稿日期:
2020-06-29
修回日期:
2020-08-28
出版日期:
2020-10-28
发布日期:
2020-09-17
通讯作者:
曹余良
E-mail:ylcao@whu.edu.cn
基金资助:
ZENG Zi-qi, AI Xin-ping, YANG Han-xi, CAO Yu-liang*()
Received:
2020-06-29
Revised:
2020-08-28
Published:
2020-10-28
Online:
2020-09-17
Contact:
CAO Yu-liang
E-mail:ylcao@whu.edu.cn
摘要:
随着锂离子电池的市场拓展,安全性问题已成为电动汽车、大规模储能等应用领域关注的首要问题. 目前商品化的锂离子电池普遍采用低沸点碳酸酯类电解液,其易燃性成为电池不安全性的主要隐患. 为了提高锂离子电池的本征安全性,阻燃或不燃性电解液成为近年来研究的热点,其中以磷酸酯为溶剂的阻燃型或不燃型电解液受到广泛关注. 本文主要介绍磷酸酯阻燃和不燃电解液的研究状况,分析了这类电解液与锂离子电池正负极的兼容性问题,讨论了改善磷酸酯电解液电化学兼容性的途径,提出了发展高效、安全、稳定的不燃电解液的一些思路.
中图分类号:
曾子琪, 艾新平, 杨汉西, 曹余良. 有机磷酸酯阻燃电解液的研究进展[J]. 电化学(中英文), 2020, 26(5): 683-693.
ZENG Zi-qi, AI Xin-ping, YANG Han-xi, CAO Yu-liang. Research Progress of High-Safety Phosphorus-Based Electrolyte[J]. Journal of Electrochemistry, 2020, 26(5): 683-693.
图4
(A)-(B) 钴酸锂正极的电化学性能. 电解液为1:2 LiFSI-TEP+5vol.% FEC+0.05 mol·L-1 LiBOB. (C)-(E)电解液为1:2 LiFSI-TEP+5vol.% FEC+0.05 mol·L-1 LiBOB 的18650电池的首圈充放电曲线、在0.05C下的循环性能和倍率性能. 充放电区间3 V ~ 4.2 V. 1C = 2000 mA. 在4.2 V下进行恒压至电流小于40 mA. (F)使用1:2 LiFSI-TEP+5vol.% FEC+0.05 mol·L-1 LiBOB电解液的18650电池的针刺测试结果(中). 使用碳酸酯电解液的电池测试后的电池(下). 测试前的电池(上)[34].
[1] |
Kalhoff J, Eshetu G G, Bresser D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015,8(13):2154-2175.
URL pmid: 26075350 |
[2] | Wu X K, Song K F, Zhang X Y, et al. Safety issues in lithium ion batteries: Materials and cell design[J]. Frontiers in Energy Research, 2019,7:65. |
[3] | Selman J R, Al Hallaj S, Uchida I, et al. Cooperative research on safety fundamentals of lithium batteries[J]. Journal of Power Sources, 2001, 97-98:726-732. |
[4] | Fang S H, Qu L, Luo D, et al. Novel mixtures of ether-fun-ctionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries[J]. RSC Advances, 2015,5(43):33897-33904. |
[5] |
Fan X L, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018,13(8):715-722.
doi: 10.1038/s41565-018-0183-2 URL pmid: 30013215 |
[6] | Dalavi S, Xu M Q, Ravdel B, et al. Nonflammable electrolytes for lithium-ion batteries containing dimethylmethylphosphonate[J]. Journal of the Electrochemical Society, 2010,157(10):A1113-A1120. |
[7] | Xiang H F, Jin Q Y, Chen C H, et al. Dimethyl methylpho-sphonate-based nonflammable electrolyte and high safety lithium-ion batteries[J]. Journal of Power Sources, 2007,174(1):335-341. |
[8] | Wang X M, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of The Electrochemical Society, 2001,148(10):A1058-A1065. |
[9] | Xu K, Ding M S, Zhang S S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of The Electrochemical Society, 2002,149(5):A622-A626. |
[10] | Feng J K, Ma P, Yang H X, et al. Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries[J]. Electro-chimica Acta, 2013,114:688-692. |
[11] | Hyung Y E, Vissers D R, Amine K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sour-ces, 2003, 119-121:383-387. |
[12] | Xu K, Zhang S S, Allen J L, et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate[J]. Journal of The Electrochemical Society, 2002,149(8):A1079-A1082. |
[13] | Xu K, Zhang S S, Allen J L, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: II. Performance in cell[J]. Journal of The Electrochemical Society, 2003,150(2):A170-A175. |
[14] | Zhang S S, Xu K, Jow T R. Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003,113(1):166-172. |
[15] | Zeng Z Q, Jiang X Y, Wu B B, et al. Bis(2,2,2-trifluoroethyl) methylphosphonate: An novel flame-retardant additive for safe lithium-ion battery[J]. Electrochimica Acta, 2014,129:300-304. |
[16] | Zhu X M, Jiang X Y, Ai X P, et al. Bis(2,2,2-Trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electro-chimica Acta, 2015,165:67-71. |
[17] | Wu B B, Pei F, Wu Y, et al. An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries[J]. Journal of Power Sources, 2013,227:106-110. |
[18] | Nakagawa H, Ochida M, Domi Y, et al. Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester[J]. Journal of Power Sources, 2012,212:148-153. |
[19] | Feng J K, Sun X J, Ai X P, et al. Dimethyl methyl phosphate: A new nonflammable electrolyte solvent for lithium-ion batteries[J]. Journal of Power Sources, 2008,184(2):570-573. |
[20] | Wang X M, Yamada C, Naito H, et al. High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells[J]. Journal of The Electrochemical Society, 2006,153(1):A135-A139. |
[21] |
Zeng Z Q, Jiang X Y, Li R, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016,3(9):1600066.
URL pmid: 27711263 |
[22] | Zeng Z Q, Wu B B, Xiao L F, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015,279:6-12. |
[23] | Zeng Z Q, Liu X W, Jiang X Y, et al. Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte[J]. InfoMat, 2020, DOI: 10.1002/inf2.12089. |
[24] |
Jiang X Y, Liu X M, Zeng Z Q, et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries[J]. iScience, 2018,10:114-122.
URL pmid: 30513393 |
[25] | Jiang X Y, Zeng Z Q, Xiao L F, et al. An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan[J]. ACS Applied Materials & Interfaces, 2017,9(50):43733-43738. |
[26] |
Liu X W, Jiang X Y, Zhong F P, et al. High-safety symmetric sodium-ion batteries based on nonflammable phosphate electrolyte and double Na3V2(PO4)3 electrodes[J]. ACS Applied Materials & Interfaces, 2019,11(31):27833-27838.
URL pmid: 31287282 |
[27] | Wang J H, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018,3(1):22-29. |
[28] | Chen S R, Zheng J M, Mei D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018,30(21):1706102. |
[29] |
Suo L M, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015,350(6263):938-943.
URL pmid: 26586759 |
[30] |
Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014,136(13):5039-5046.
doi: 10.1021/ja412807w URL pmid: 24654781 |
[31] | Yamada Y, Koyama Y, Abe T, et al. Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes[J]. The Journal of Physical Chemistry C, 2009,113(20):8948-8953. |
[32] |
Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013,4:2513-2519.
doi: 10.1038/ncomms3513 URL pmid: 24085110 |
[33] | Xiao L F, Zeng Z Q, Liu X W, et al. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries[J]. ACS Energy Letters, 2019,4(2):483-488. |
[34] | Zeng Z Q, Murugesan V, Han K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018,3(8):674-681. |
[35] |
Liu X W, Shen X H, Zhong F P, et al. Enabling electrochemical compatibility of non-flammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent[J]. Chemical Communications, 2020,56(48):6559-6562.
doi: 10.1039/d0cc02940h URL pmid: 32396155 |
[36] | Jiang X Y, Liu X W, Zeng Z Q, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life[J]. Advanced Energy Materials, 2018,8(36):1802176. |
[37] |
Liu X W, Jiang X Y, Zeng Z Q, et al. High capacity and cycle-stable hard carbon anode for nonflammable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018,10(44):38141-38150.
URL pmid: 30335351 |
[38] | Shiga T, Kato Y, Kondo H, et al. Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries[J]. Journal of Materials Chemistry A, 2017,5(10):5156-5162. |
[39] |
Takada K, Yamada Y, Yamada A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Materials & Interfaces, 2019,11(39):35770-35776.
doi: 10.1021/acsami.9b12709 URL pmid: 31498585 |
[40] | Chen S R, Zheng J M, Yu L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018,2(8):1548-1558. |
[41] | Cao X, Xu Y B, Zhang L C, et al. Nonflammable electrolytes for lithium ion batteries enabled by ultraconformal passivation interphases[J]. ACS Energy Letters, 2019,4(10):2529-2534. |
[42] |
Yang H J, Guo C, Chen J H, et al. An Intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019,58(3):791-795.
URL pmid: 30426649 |
[43] |
Chen J H, Yang H J, Zhang X, et al. Highly reversible lithium-metal anode and lithium-sulfur batteries enabled by an intrinsic safe electrolyte[J]. ACS Applied Materials & Interfaces, 2019,11(36):33419-33427.
URL pmid: 31423761 |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[4] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[5] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[6] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[7] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[8] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[9] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[10] | 张滟滟, 刘越, 陆一鸣, 于沛平, 杜文轩, 麻冰云, 谢淼, 杨昊, 程涛. 多尺度模拟研究溶质调控下电解液在锂金属电极上的分解机理[J]. 电化学(中英文), 2022, 28(4): 2105181-. |
[11] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[12] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[13] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[14] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[15] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||