电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 607-627. doi: 10.13208/j.electrochem.200641
王佳1,2, 黄秋安1,*(), 李伟恒1, 王娟2,*(), 庄全超3, 张久俊1,*()
收稿日期:
2020-06-08
修回日期:
2020-07-05
出版日期:
2020-10-28
发布日期:
2020-07-08
通讯作者:
黄秋安,王娟,张久俊
E-mail:qiuan_huang@shu.edu.cn;juanwang168@gmail.com;jiujun.zhang@i.shu.edu.cn
基金资助:
WANG Jia1,2, HUANG Qiu-an1,*(), LI Wei-heng1, WANG Juan2,*(), ZHUANG Quan-chao3, ZHANG Jiu-jun1,*()
Received:
2020-06-08
Revised:
2020-07-05
Published:
2020-10-28
Online:
2020-07-08
Contact:
HUANG Qiu-an,WANG Juan,ZHANG Jiu-jun
E-mail:qiuan_huang@shu.edu.cn;juanwang168@gmail.com;jiujun.zhang@i.shu.edu.cn
摘要:
电化学阻抗谱(EIS)是一种高效的原位/非原位电化学表征技术,已在电化学能源领域得到广泛应用,如用于锂离子电池、超级电容器、燃料电池等材料及器件性能的诊断和优化. 弛豫时间分布(DRT)是一种不依赖于研究对象先验知识的EIS解析技术,可用于分离和解析EIS中高度重叠的物理化学过程. 为了促进DRT解析技术的应用和推广,本文详细阐述了如下问题: 1) DRT解析原理、实现算法及重要扩展; 2) 典型电路基元的DRT解析分析; 3) DRT的具体实现及在电化学能源中的典型应用举例; 4)DRT解析技术研究进展、存在问题及发展趋势.
中图分类号:
王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627.
WANG Jia, HUANG Qiu-an, LI Wei-heng, WANG Juan, ZHUANG Quan-chao, ZHANG Jiu-jun. Fundamentals of Distribution of Relaxation Times for Electrochemical Impedance Spectroscopy[J]. Journal of Electrochemistry, 2020, 26(5): 607-627.
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012,488(7411):294-303.
doi: 10.1038/nature11475 URL pmid: 22895334 |
[2] | Khan M A, Zhao H B, Zou W W, et al. Recent progresses in electrocatalysts for water electrolysis[J]. Electrochemical Energy Reviews, 2018,1(4):483-530. |
[3] | Lu J, Chen Z W, Pan F, et al. High-performance anode materials for rechargeable Li-thiumion batteries[J]. Electrochemical Energy Reviews, 2018,1(1):35-53. |
[4] | Tian N, Lu B A, Yang X D, et al. Rational design and synjournal of low-temperature fuel cell electrocatalysts[J]. Electrochemical Energy Reviews, 2018,1(1):54-83. |
[5] | Wang Y J, Fang B, Zhang D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018,1(1):1-34. |
[6] | Zhang H M, Lu W J, Li X F. Progress and perspectives of flow battery technologies[J]. Electrochemical Energy Reviews, 2019,2(1):1-15. |
[7] | Bouwmeester H, Gellings P J. The CRC handbook of solid state electrochemistry[M]. New York: CRC Press, 1997. |
[8] | Bard A J, Faulkner L R, Leddy J, et al. Electrochemical methods: fundamentals and applications[M]. New York: wiley, 1980. |
[9] | Huang J(黄俊). Electrochemical impedance spectroscopy for electrocatalytic interfaces and reactions: Classics never die[J]. Journal of Electrochemistry (电化学), 2020,26(1):3-18. |
[10] | Macdonald D D. Reflections on the history of electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2006,51(8/9):1376-1388. |
[11] | Randviir E P, Banks C E. Electrochemical impedance spectroscopy: an overview of bioanalytical applications[J]. Analytical Methods, 2013,5(5):1098-1115. |
[12] |
Rupp G M, Opitz A K, Nenning A, et al. Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes[J]. Nature Materials, 2017,16(6):640-645.
doi: 10.1038/nmat4879 URL pmid: 28346431 |
[13] | Barsoukov E, Macdonald J R. Impedance spectroscopy: theory, experiment, and applications[M]. Hoboken, NJ: Wiley, 2018. |
[14] | Zhuang Q C(庄全超), Xu S D(徐守冬), Qiu X Y(邱祥云), et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry (化学进展), 2010,22(6):1044-1057. |
[15] | Lasia A. Electrochemical impedance spectroscopy and its applications[M] //Modern aspects of electrochemistry. Springer, Boston, MA, 2002: 143-248. |
[16] |
Song J, Bazant M Z. Electrochemical impedance imaging via the distribution of diffusion times[J]. Physical Review letters, 2018,120(11):116001.
URL pmid: 29601735 |
[17] | Macdonald D D. Why electrochemical impedance spectroscopy is the ultimate tool in mechanistic analysis[M]. ECS Transactions, 2009,19(20):55-79. |
[18] |
Huang Q A, Hui R, Wang B, et al. A review of AC impedance modeling and validation in SOFC diagnosis[J]. Electrochimica Acta, 2007,52(28):8144-8164.
doi: 10.1016/j.electacta.2007.05.071 URL |
[19] | Huang Q A(黄秋安), Li W H(李伟恒), Tang Z P(汤哲鹏), et al. Fundamentals of electrochemical impedance spectroscopy[J]. Chinese Journal of Nature (自然), 2020,42(1):1-15. |
[20] |
Schichlein H, Müller A C, Voigts M, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells[J]. Journal of Applied Electrochemistry, 2002,32(8):875-882.
doi: 10.1023/A:1020599525160 URL |
[21] |
Ciucci F. Modeling electrochemical impedance spectroscopy[J]. Current Opinion in Electrochemistry, 2019,13:132-139.
doi: 10.1016/j.coelec.2018.12.003 URL |
[22] |
Huang J, Li Z, Liaw B Y, et al. Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations[J]. Journal of Power Sources, 2016,309:82-98.
doi: 10.1016/j.jpowsour.2016.01.073 URL |
[23] |
Ivers-Tiffee E, Weber A. Evaluation of electrochemical impedance spectra by the distribution of relaxation times[J]. Journal of the Ceramic Society of Japan, 2017,125(4):193-201.
doi: 10.2109/jcersj2.16267 URL |
[24] |
Kobayashi K, Suzuki T S. Distribution of relaxation time analysis for non-ideal immittance spectrum: discussion and progress[J]. Journal of the Physical Society of Japan, 2018,87(9):094002.
doi: 10.7566/JPSJ.87.094002 URL |
[25] | Shi W Y(施王影), Jia C(贾川), Zhang Y L(张永亮), et al. Differentiation and decomposition of solid oxide fuel cell electrochemical impedance spectra[J]. Acta Physico-Chimica Sinica (物理化学学报), 2019,35(5):509-516. |
[26] | Fuoss R M, Kirkwoo J G. Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems[J]. The Journal of Chemical Physics, 1941,63(2):385-394. |
[27] | Colonomos P, Gordon R G. Bounded error analysis of experimental distributions of relaxation times[J]. The Journal of Chemical Physics, 1979,71(3):1159-1166. |
[28] | Misell D L, Sheppard R J. The application of deconvolution techniques to dielectric data[J]. Journal of Physics D (Applied Physics), 1973,6(4):379-389. |
[29] | Salefran J L, Dutuit Y. The use of a discriminative window in deconvolution method applied to dielectric data[J]. The Journal of Chemical Physics, 1981,74(5):3056-3063. |
[30] | Morgan F D, Lesmes D P. Inversion for dielectric relaxation spectra[J]. The Journal of Chemical Physics, 1994,100(1):671-681. |
[31] | Paulson K S, Jouravleva S, McLeod C N. Dielectric relaxation time spectroscopy[J]. IEEE Transactions on Bio-Me-dical Engineering, 2000,47(11):1510-1517. |
[32] | Schichlein H, Feuerstein M, Müller A, et al. System identification: a new modelling approach for SOFC single cells[C]//The electrochemical society. Solid Oxide Fuel Cells:(SOFC VI): Proceedings of the Sixth International Symposium. October 17-22, 1999, Honolulu, Hawaii, USA. Pennington, New Jersey: the electrochemical society Electrochem, 1999: 1069-1077. |
[33] | Danzer M A. Generalized distribution of relaxation times analysis for the characterization of impedance spectra[J]. Batteries, 2019,5(3):53. |
[34] | Boukamp B A. Fourier transform distribution function of relaxation times; application and limitations[J]. Electro-chimica Acta, 2015,154:35-46. |
[35] | Boukamp B A, Rolle A. Analysis and application of distribution of relaxation times in solid state ionics[J]. Solid State Ionics, 2017,302(SI):12-18. |
[36] | Hörlin T. Deconvolution and maximum entropy in imped-ance spectroscopy of noninductive systems[J]. Solid State Ionics, 1998,107(3/4):241-253. |
[37] | Tuncer E, Gubanski S M. On dielectric data analysis. Using the Monte Carlo method to obtain relaxation time distribution and comparing non-linear spectral function fits[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001,8(3):310-320. |
[38] | Tesler A B, Lewin D R, Baltianski S, et al. Analyzing results of impedance spectroscopy using novel evolutionary programming techniques[J]. Journal of Electroceramics, 2010,24(4):245-260. |
[39] | Hershkovitz S, Baltianski S, Tsur Y. Harnessing evolutionary programming for impedance spectroscopy analysis: A case study of mixed ionic-electronic conductors[J]. Solid State Ionics, 2011,188(1):104-109. |
[40] | Hershkovitz S, Tomer S, Baltianski S, et al. ISGP: Imped-ance spectroscopy analysis using evolutionary programming procedure[M]. ECS Transactions, 2011,33(40):67-73. |
[41] | Hershkovitz S, Baltianski S, Tsur Y. Electrochemical im-pedance analysis of SOFC cathode reaction using evolutionary programming[J]. Fuel Cells, 2012,12(1):77-85. |
[42] |
Žic M, Pereverzyev S, Subotic V, et al. Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times[J]. GEM-International Journal on Geomathematics, 2020,11(1):2.
doi: 10.1007/s13137-019-0138-2 URL pmid: 31839841 |
[43] | Saccoccio M, Wan T H, Chen C, et al. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: Ridge and lasso regression methods - a theoretical and experimental study[J]. Electrochimica Acta, 2014,147:470-482. |
[44] | Wan T H, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools[J]. Electrochimica Acta, 2015,184:483-499. |
[45] | Zhang Y X, Chen Y, Yan M F, et al. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2015,283:464-477. |
[46] | Zhang Y X, Chen Y, Li M, et al. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2016,308:1-6. |
[47] | Li X, Ahmadi M, Collins L, et al. Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning[J]. Electrochimica Acta, 2019,313:570-583. |
[48] |
Hahn M, Schindler S, Triebs L C, et al. Optimized process parameters for a reproducible distribution of relaxation times analysis of electrochemical systems[J]. Batteries, 2019,5(2):43.
doi: 10.3390/batteries5020043 URL |
[49] |
Garda B, Galias Z. Tikhonov regularization and constrained quadratic programming for magnetic coil design problems[J]. International Journal of Applied Mathematics and Computer Science, 2014,24(2):249-257.
doi: 10.2478/amcs-2014-0018 URL |
[50] | Tikhonov A N, Goncharsky A V, Stepanov V V, et al. Numerical methods for the solution of ill-posed problems[M]. Dordrecht: Springer, 2013. |
[51] |
Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993,14(6):1487-1503.
doi: 10.1137/0914086 URL |
[52] |
Golub G H, Hansen P C, O'Leary D P. Tikhonov regularization and total least squares[J]. SIAM Journal on Matrix Analysis and Applications, 1999,21(1):185-194.
doi: 10.1137/S0895479897326432 URL |
[53] | Smirnova A L, Ellwood K R, Crosbie G M. Application of fourier-based transforms to impedance spectra of small-diameter tubular solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2001,148(6):A610-A615. |
[54] |
Oz A, Hershkovitz S, Belman N, et al. Analysis of imped-ance spectroscopy of aqueous supercapacitors by evolutionary programming: Finding DFRT from complex capacitance[J]. Solid State Ionics, 2016,288(SI):311-314.
doi: 10.1016/j.ssi.2015.11.008 URL |
[55] |
Schönleber M, Ivers-Tiffée E. The distribution function of differential capacity as a new tool for analyzing the capacitive properties of lithium-ion batteries[J]. Electrochemistry Communications, 2015,61:45-48.
doi: 10.1016/j.elecom.2015.09.024 URL |
[56] |
Guo D X, Yang G, Zhao G J, et al. Determination of the differential capacity of lithium-ion batteries by the deconvolution of electrochemical impedance spectra[J]. Energies, 2020,13(4):915.
doi: 10.3390/en13040915 URL |
[57] |
Oz A, Gelman D, Goren E, et al. A novel approach for supercapacitors degradation characterization[J]. Journal of Power Sources, 2017,355:74-82.
doi: 10.1016/j.jpowsour.2017.04.048 URL |
[58] | Quattrocchi E, Wan T H, Curcio A, et al. A general model for the impedance of batteries and supercapacitors: The non-linear distribution of diffusion times[J]. Electro-chimica Acta, 2019, 324: UNSP 134853. |
[59] | Pereverzev S V, Solodky S G, Vasylyk V B, et al. Regularized collocation in distribution of diffusion times applied to electrochemical impedance spectroscopy[J]. Com-putational Methods in Applied Mathematics, 2020,20(3):517-530. |
[60] |
Schönleber M, Ivers-Tiffée E. Approximability of imped-ance spectra by RC elements and implications for impedance analysis[J]. Electrochemistry Communications, 2015,58:15-19.
doi: 10.1016/j.elecom.2015.05.018 URL |
[61] |
Žic M, Pereverzyev S, Subotic V, et al. Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times[J]. GEM-International Journal on Geomathematics, 2020,11(1):2.
doi: 10.1007/s13137-019-0138-2 URL pmid: 31839841 |
[62] |
Dion F, Lasia A. The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes[J]. Journal of Electroanalytical Chemistry, 1999,475(1):28-37.
doi: 10.1016/S0022-0728(99)00334-4 URL |
[63] |
Gavrilyuk A L, Osinkin D A, Bronin D I. The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy[J]. Russian Journal of Electrochemistry, 2017,53(6):575-588.
doi: 10.1134/S1023193517060040 URL |
[64] | Leonide A, Apel Y, Ivers-Tiffee E. SOFC modeling and parameter identification by means of impedance spectroscopy[M]. ECS Transactions, 2009,19(20):81-109. |
[65] | Huang Q A, Shen Y, Huang Y, et al. Impedance characteristics and diagnoses of automotive lithium-ion batteries at 7.5% to 93.0% state of charge[J]. Electrochimica Acta, 2016,219:751-765. |
[66] | Huang Q A, Li Y, Tsay K C, et al. Multi-scale impedance model for supercapacitor porous electrodes: Theoretical prediction and experimental validation[J]. Journal of Power Sources, 2018,400:69-86. |
[67] | Boukamp B A. Derivation of a distribution function of relaxation times for the (fractal) finite length warburg[J]. Electrochimica Acta, 2017,252:154-163. |
[68] | Boukamp B A, Rolle A. Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes[J]. Solid State Ionics, 2018,314:103-111. |
[69] | Malkow K T. A theory of distribution functions of relaxation times for the deconvolution of immittance data[J]. Journal of Electroanalytical Chemistry, 2019,838:221-231. |
[70] | Liu J, Ciucci F. The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data[J]. Electrochimica Acta, 2020,331:135316. |
[71] | Schmidt J P, Chrobak T, Ender M, et al. Studies on LiFePO4 as cathode material using impedance spectroscopy[J]. Journal of Power Sources, 2011,196(12):5342-5348. |
[72] | Illig J, Ender M, Chrobak T, et al. Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling[J]. Journal of The Electrochemical Society, 2012,159(7):A952-A960. |
[73] | Illig J, Schmidt J P, Weiss M, et al. Understanding the impedance spectrum of 18650 LiFePO4-cells[J]. Journal of Power Sources, 2013,239:670-679. |
[74] | Schmidt J P, Berg P, Schönleber M, et al. The distribution of relaxation times as basis for generalized time-domain models for Li-ion batteries[J]. Journal of Power Sources, 2013,221:70-77. |
[75] | Gantenbein S, Weiss M, Ivers-Tiffée E. Impedance based time-domain modeling of lithium-ion batteries: Part I[J]. Journal of Power Sources, 2018,379:317-327. |
[76] | Schönleber M, Uhlmann C, Braun P, et al. A consistent derivation of the impedance of a lithium-ion battery electrode and its dependency on the state-of-charge[J]. Electrochimica Acta, 2017,243:250-259. |
[77] | Schmidt J P, Ivers-Tiffée E. Pulse-fitting - A novel method for the evaluation of pulse measurements, demonstrated for the low frequency behavior of lithium-ion cells[J]. Journal of Power Sources, 2016,315:316-323. |
[78] | Zhou X, Huang J, Pan Z Q, et al. Impedance characterization of lithium-ion batteries aging under high-temperature cycling: Importance of electrolyte-phase diffusion[J]. Journal of Power Sources, 2019,426:216-222. |
[79] |
Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012,41(2):797-828.
doi: 10.1039/c1cs15060j URL pmid: 21779609 |
[80] | Fletcher S, Kirkpatrick I, Dring R, et al. The modelling of carbon-based supercapacitors: distributions of time constants and pascal equivalent circuits[J]. Journal of Power Sources, 2017,345:247-253. |
[81] | Helseth L E. Modelling supercapacitors using a dynamic equivalent circuit with a distribution of relaxation times[J]. Journal of Energy Storage, 2019, 25: UNSP 10912. |
[82] | Zhang J. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications[M]. London: Springer, 2008. |
[83] | Mertens A, Granwehr J. Two-dimensional impedance data analysis by the distribution of relaxation times[J]. Journal of Energy Storage, 2017,13:401-408. |
[84] | Schindler S, Weiss A, Galbiati S, et al. Identification of polarization losses in high-temperature PEM fuel cells by distribution of relaxation times analysis[M]. ECS Transactions, 2016,75(14):45-53. |
[85] | Weiss A, Schindler S, Galbiati S, et al. Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra[J]. Electrochimica Acta, 2017,230:391-398. |
[86] | Bevilacqua N, Gokhale R R, Serov A, et al. Comparing novel PGM-Free, Platinum, and alloyed platinum catalysts for HT-PEMFCs[M]. ECS Transactions, 2018,86(13):221-229. |
[87] | Heinzmann M, Weber A, Ivers-Tiffée E. Advanced im-pedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times[J]. Journal of Power Sources, 2018,402:24-33. |
[88] | Simon Araya S, Zhou F, Lennart Sahlin S, et al. Fault characterization of a proton exchange membrane fuel cell stack[J]. Energies, 2019,12(1):152. |
[89] | Guo J W(郭建伟), Wang J L(王建龙). The pilot application of electrochemical impedance spectroscopy on dynamic proton exchange membrane fuel cell[J]. Journal of Electrochemistry (电化学), 2018,24(6):668-696. |
[90] | Yuan X Z, Wang H J, Sun J C, et al. AC impedance technique in PEM fuel cell diagnosis — A review[J]. International Journal of Hydrogen Energy, 2007,32(17):4365-4380. |
[91] | Yuan X-Z R, Song C, Wang H, et al. Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications[M]. London: Springer Verlag-London, 2010. |
[92] | Yezerska K, Liu F, Dushina A, et al. Analysis of the regeneration behavior of high temperature polymer electrolyte membrane fuel cells after hydrogen starvation[J]. Journal of Power Sources, 2020,449:227562. |
[93] | Yao Y F(姚颖方), Liu J G(刘建国) L, Zou Z G(邹志刚). Degradation mechanism and anti-aging strategies of membrane electrode assembly of fuel cells[J]. Journal of Electrochemistry (电化学), 2018,24(6):664-676. |
[94] | Sonn V, Leonide A, Ivers-Tiffée E. Combined deconvolution and CNLS fitting approach applied on the imped-ance response of technical Ni/8YSZ cermet electrodes[J]. Journal of The Electrochemical Society, 2008,155(7):B675-B679. |
[95] | Leonide A, Weber A, Ivers-Tiffée E. Electrochemical analysis of biogas fueled anode supported SOFC[M]. ECS Transactions, 2011,35(1):2961-2968. |
[96] | Leonide A, Sonn V, Weber A, et al. Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2007,155(1):B36-B41. |
[97] | Kornely M, Neumann A, Menzler N H, et al. Degradation of anode supported cell (ASC) performance by Cr-poisoning[J]. Journal of Power Sources, 2011,196(17):7203-7208. |
[98] | Endler C, Leonide A, Weber A, et al. Time-dependent electrode performance changes in intermediate temperature solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2009,157(2):B292-B298. |
[99] | Ma Q L, Tietz F, Leonide A, et al. Impedance studies on solid oxide fuel cells with yttrium-substituted SrTiO3 ceramic anodes[M]. ECS Transactions, 2011,35(1):1421-1433. |
[100] | Weber A, Dierickx S, Kromp A, et al. Sulfur poisoning of anode-supported SOFCs under reformate operation[J]. Fuel Cells, 2013,13(4):487-493. |
[101] | Sumi H, Yamaguchi T, Hamamoto K, et al. Electrochemical analysis for anode-supported microtubular solid oxide fuel cells in partial reducing and oxidizing conditions[J]. Solid State Ionics, 2014,262(SI):407-410. |
[102] | Kornely M, Menzler N H, Weber A, et al. Degradation of a high performance SOFC cathode by Cr-poisoning at OCV-conditions[J]. Fuel Cells, 2013,13(4):506-510. |
[103] | Nechache A, Mansuy A, Petitjean M, et al. Diagnosis of a cathode-supported solid oxide electrolysis cell by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2016,210:596-605. |
[104] | Oz A, Gelman D, Tsur Y, et al. Evolutionary programming based approach for SOFC cathode characterization: A case study on Co-free mixed conducting perovskites[M]. ECS Transactions, 2017,78(1):2099-2108. |
[105] | Li W, Huang Q A, Yang C, et al. A fast measurement of Warburg-like impedance spectra with Morlet wavelet transform for electrochemical energy devices[J]. Electro-chimica Acta, 2019,322:134760. |
[106] | Subotic V, Schluckner C, Strasser J, et al. In-situ electrochemical characterization methods for industrial-sized planar solid oxide fuel cells Part I: Methodology, qualification and detection of carbon deposition[J]. Electrochimica Acta, 2016,207:224-236. |
[107] | Graves C, Ebbesen S D, Mogensen M. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability[J]. Solid State Ionics, 2011,192(1):398-403. |
[108] | Wuillemin Z, Antonetti Y, Beetschen C, et al. Local activation and degradation of electrochemical processes in a SOFC[M]. ECS Transactions, 2013,57(1):561-570. |
[109] | Fang Q, Blum L, Menzler N H. Performance and degradation of solid oxide electrolysis cells in stack[J]. Journal of The Electrochemical Society, 2015,162(8):F907-F912. |
[110] | Paul T, Yavo N, Lubomirsky I, et al. Determination of grain boundary conductivity using distribution function of relaxation times (DFRT) analysis at room temperature in 10mol% Gd doped ceria: A non-classical electrostrictor[J]. Solid State Ionics, 2019,331:18-21. |
[111] | Baral A K, Tsur Y. Sintering aid (ZnO) effect on proton transport in BaCe0.35ZR0.5Y0.15O3-δ and electrode phenomena studied by distribution function of relaxation times[J]. Journal of the American Ceramic Society, 2019,102(1):239-250. |
[112] | Baral A K, Tsur Y. Impedance spectroscopy of Gd-doped ceria analyzed by genetic programming (ISGP) method[J]. Solid State Ionics, 2017,304:145-149. |
[1] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[2] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[3] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[4] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[5] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[6] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[7] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
[8] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[9] | 张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学(中英文), 2022, 28(2): 2108471-. |
[10] | 叶珍珍, 张抒婷, 陈鑫祺, 王瑾, 金鹰, 崔超婕, 张磊, 钱陆明, 张刚, 骞伟中. 基于离子液体的超级电容在3 V及65 oC老化条件下的铝碳界面效应[J]. 电化学(中英文), 2022, 28(12): 2219005-. |
[11] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[12] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[13] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[14] | 滕久康, 王庆杰, 张亮, 张红梅, 陈晓涛, 张鹏, 赵金保. 热处理时间对锂电池正极材料Cr8O21的影响[J]. 电化学(中英文), 2021, 27(6): 689-697. |
[15] | 朱从懿, 李笑晖, 甘全全. 乙二醇基冷却液污染对质子交换膜燃料电池电堆的影响及恢复措施[J]. 电化学(中英文), 2021, 27(6): 698-704. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||