电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 628-638. doi: 10.13208/j.electrochem.200653
收稿日期:
2020-07-17
修回日期:
2020-09-16
出版日期:
2020-10-28
发布日期:
2020-10-28
通讯作者:
汪的华
E-mail:wangdh@whu.edu.cn
基金资助:
DENG Bo-wen, YIN Hua-yi, WANG Di-hua*()
Received:
2020-07-17
Revised:
2020-09-16
Published:
2020-10-28
Online:
2020-10-28
Contact:
WANG Di-hua
E-mail:wangdh@whu.edu.cn
摘要:
高温熔融盐具有CO2吸收容量大、电化学窗口宽、高温下反应动力学快等特点,是利用清洁电能大规模捕集和资源化利用CO2颇具实用化潜力的电解液体系. 本文主要介绍作者课题组近十年关于高温熔盐CO2捕集与电化学资源化转化(MSCC-ET)技术的相关研究工作,包括熔融盐电解质对CO2的吸收、阴极过程动力学、电解条件对产物的影响、析氧阳极、电解过程能量效率和CO2捕获潜力,并展望了MSCC-ET技术的发展前景.
中图分类号:
邓博文, 尹华意, 汪的华. CO2高效资源化利用的高温熔盐电化学技术研究[J]. 电化学(中英文), 2020, 26(5): 628-638.
DENG Bo-wen, YIN Hua-yi, WANG Di-hua. Highly Efficient CO2 Utilization via Molten Salt CO2 Capture and Electrochemical Transformation Technology[J]. Journal of Electrochemistry, 2020, 26(5): 628-638.
表1
450 oC不同熔融碳酸盐中氧化物对CO2的吸收能力和阴极反应电势
Electrolyte | Equilibrium pressure of CO2/ (Pa, aMyO=0.001 mol·L-1) | Deposition potential of metal EM /V(vs. CO2-O2/CO32-) | Deposition potential of C EC /V(vs. CO2-O2/CO32-) | Evolution potential of CO ECO /V(vs. CO2-O2/CO32-) |
---|---|---|---|---|
Li2CO3 | 1.039 | -3.183 | -1.883 | -2.284 |
Na2CO3 | 2.462×10-8 | -2.757 | -2.681 | -3.378 |
K2CO3 | 2.054×10-13 | -2.829 | -3.251 | -4.107 |
CaCO3 | 2.309×103 | -3.230 | -1.523 | -1.804 |
BaCO3 | 1.793×10-3 | -3.266 | -2.181 | -2.681 |
表3
不同清洁能源的CO2排放当量及其用以驱动MSCC-ET的CO2净转化效率
Electricity source | *Average amount of equivalent CO2 emission in 50th percentile[ | CO2 reduction efficiency/% (6.4 kWh·kg-1-CO2@50%EE) |
---|---|---|
Hydroelectric | 4 | 97.44 |
Wind | 12 | 92.32 |
Nuclear | 16 | 89.76 |
Biomass | 18 | 88.48 |
Solar thermal | 22 | 85.92 |
Geothermal | 45 | 71.20 |
Solar PV | 46 | 70.56 |
[1] | Yang Y, Ajmal S, Zheng X Y, et al. Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction[J]. Sustainable Energy & Fuels, 2018,2(3):510-537. |
[2] |
De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynjournal to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
doi: 10.1126/science.aav3506 URL pmid: 31023896 |
[3] | Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453. |
[4] |
Jiang R, Gao M X, Mao X H, et al. Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process[J]. Current Opinion in Electrochemistry, 2019,17:38-46.
doi: 10.1016/j.coelec.2019.04.011 URL |
[5] |
Bartlett H E, Johnson K E. Electrochemical studies in molten Li2CO3-Na2CO3[J]. Journal of The Electrochemical Society, 1967,114(5):457-461.
doi: 10.1149/1.2426627 URL |
[6] | Yin H Y, Mao X H, Tang D Y, et al. Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis[J]. Energy & Environmental Science, 2013,6(5):1538-1545. |
[7] |
Ijije H V, Sun C, Chen G Z. Indirect electrochemical reduction of carbon dioxide to carbon nanopowders in molten alkali carbonates: Process variables and product properties[J]. Carbon, 2014,73:163-174.
doi: 10.1016/j.carbon.2014.02.052 URL |
[8] |
Ren J, Li F F, Lau J, et al. One-pot synjournal of carbon nanofibers from CO2[J]. Nano Letters, 2015,15(9):6142-6148.
doi: 10.1021/acs.nanolett.5b02427 URL pmid: 26237131 |
[9] |
Hu L W, Song Y, Ge J B, et al. Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts[J]. Journal of Materials Chemistry A, 2015,3(42):21211-21218.
doi: 10.1039/C5TA05127D URL |
[10] | Wang D H(汪的华), Chen Z(陈政). Innovation in molten salt electrochemistry[J]. Journal of the Electrochemistry (电化学), 2005,11(2):119-124. |
[11] | Xiao W(肖巍), Zhu H(朱华), Yin H Y(尹华意), et al. Novel molten-salt electrolysis processes towards low-carbon metallurgy[J]. Journal of the Electrochemistry (电化学), 2012,18(3):193-200. |
[12] | Yin H Y, Wang D H. Electrochemical valorization of carbon dioxide in molten salts[M] //Li L, Wong-Ng W, Huang K, et al. Materials and processes for CO2 capture, conversion, and sequestration. New York: John Wiley & Sons, Inc., 2018: 267-295. |
[13] | Deng B W(邓博文), Song Y Q(宋宇桥), Mao X H(毛旭辉), et al. Capture and electrochemical conversion of CO2 in high-temperature molten salts[J]. Journal of Wuhan University(Natural Science Edition) (武汉大学学报(理学版)), 2016,62(1):1-8. |
[14] |
Deng B W, Tang J J, Mao X H, et al. Kinetic and thermodynamic characterization of enhanced carbon dioxide absorption process with lithium oxide-containing ternary molten carbonate[J]. Environmental Science & Technology, 2016,50(19):10588-10595.
doi: 10.1021/acs.est.6b02955 URL pmid: 27602783 |
[15] |
Deng B W, Chen Z G, Gao M X, et al. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition[J]. Faraday Discussions, 2016,190:241-258.
doi: 10.1039/c5fd00234f URL pmid: 27193751 |
[16] |
Wakamatsu T, Uchiyama T, Natsui S, et al. Solubility of gaseous carbon dioxide in molten LiCl-Li2O[J]. Fluid Phase Equilibria, 2015,385:48-53.
doi: 10.1016/j.fluid.2014.10.046 URL |
[17] |
Hu L W, Song Y, Ge J B, et al. Electrochemical deposition of carbon nanotubes from CO2 in CaCl2-NaCl-based melts[J]. Journal of Materials Chemistry A, 2017,5(13):6219-6225.
doi: 10.1039/C7TA00258K URL |
[18] |
Tang D Y, Yin H Y, Mao X H, et al. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode[J]. Electrochimica Acta, 2013,114:567-573.
doi: 10.1016/j.electacta.2013.10.109 URL |
[19] |
Gao M X, Deng B W, Chen Z G, et al. Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures[J]. Electrochemistry Communications, 2018,88:79-82.
doi: 10.1016/j.elecom.2018.02.003 URL |
[20] |
Gao M X, Deng B W, Chen Z G, et al. Enhanced kinetics of CO2 electro-reduction on a hollow gas bubbling electrode in molten ternary carbonates[J]. Electrochemistry Communications, 2019,100:81-84.
doi: 10.1016/j.elecom.2019.01.026 URL |
[21] | Deng B W, Gao M X, Yu R, et al. Critical operating conditions for enhanced energy-efficient molten salt CO2 capture and electrolytic utilization as durable looping applications[J]. Applied Energy, 2019,255:113862. |
[22] | Gao M X, Chen Z G, Deng B W, et al. (Invited) Electrochemical deposition of carbon materials in molten salts[J]. ECS Transactions, 2017,80(10):791-799. |
[23] | Gu Y X(谷雨星), Yang J(杨娟), Wang D H(汪的华). Electrochemical features of carbon prepared by molten salt electro-reduction of CO2[J]. Acta Physico-Chimica Sinica (物理化学学报), 2018,35(2):208-214. |
[24] | Tang J J, Deng B W, Xu F, et al. The lithium storage performance of electrolytic-carbon from CO2[J]. Journal of Power Sources, 2017,341:419-426. |
[25] | Tang D Y, Dou Y P, Yin H Y, et al. The capacitive performances of carbon obtained from the electrolysis of CO2 in molten carbonates: effects of electrolysis voltage and temperature[J]. Journal of Energy Chemistry, 2019. DOI: 10.1016/j.jechem.2019.11.006. |
[26] | Mao X H, Yan Z P, Sheng T, et al. Characterization and adsorption properties of the electrolytic carbon derived from CO2 conversion in molten salts[J]. Carbon, 2017,111:162-172. |
[27] |
Jiang D, Yang J, Wang D H. Green carbon material for organic contaminants adsorption[J]. Langmuir, 2020,36(12):3141-3148.
doi: 10.1021/acs.langmuir.9b03811 URL pmid: 32146816 |
[28] | Chen Z G, Gu Y X, Du K F, et al. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt[J]. Electrochimica Acta, 2017,253:248-256 |
[29] | Ge J B, Wang S, Zhang F, et al. Electrochemical preparation of carbon films with a MO2C interlayer in LiCl-NaCl-Na2CO3 melts[J]. Applied Surface Science, 2015,347:401-405. |
[30] | Chen Z G, Deng B W, Du K F, et al. Flue-gas-derived sulfur-doped carbon with enhanced capacitance[J]. Advanced Sustainable Systems, 2017,1(6):1700047. |
[31] | Chen Z G, Gu Y X, Hu L Y, et al. Synjournal of nanostructured graphite: via molten salt reduction of CO2 and SO2 at a relatively low temperature[J]. Journal of Materials Chemistry A, 2017,5(39):20603-20607. |
[32] | Deng B W, Tang J J, Gao M X, et al. Electrolytic synjournal of carbon from the captured CO2 in molten LiCl-KCl-CaCO3: critical roles of electrode potential and temperature for hollow structure and lithium storage performance[J]. Electrochimica Acta, 2018,259:975-985. |
[33] | Deng B W, Mao X H, Xiao W, et al. Microbubble effect-assisted electrolytic synjournal of hollow carbon spheres from CO2[J]. Journal of Materials Chemistry A, 2017,5(25):12822-12827. |
[34] |
Hu L W, Song Y, Jiao S Q, et al. Direct conversion of greenhouse gas CO2 into graphene via molten salts electrolysis[J]. ChemSusChem, 2016,9(6):588-594.
URL pmid: 26871684 |
[35] | Wu H G, Liu Y, Ji D Q, et al. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts[J]. Journal of Power Sources, 2017,362:92-104. |
[36] | Liu Y, Yuan D D, Ji D Q, et al. Syngas production: diverse H2/CO range by regulating carbonates electrolyte composition from CO2/H2O: via co-electrolysis in eutectic molten salts[J]. RSC Advances, 2017,7(83):52414-52422. |
[37] | Du K F, Zheng K Y, Chen Z G, et al. Unusual temperature effect on the stability of nickel anodes in molten carbonates[J]. Electrochimica Acta, 2017,245:402-408. |
[38] | Zheng K Y, Du K F, Cheng X H, et al. Nickel-iron-copper alloy as inert anode for ternary molten carbonate electrolysis at 650oC[J]. Journal of The Electrochemical Society, 2018,165(11):E572-E577. |
[39] | Zheng K Y, Cheng X H, Dou Y P, et al. Electrolytic production of nickel-cobalt magnetic alloys from solid oxides in molten carbonates[J]. Journal of The Electrochemical Society, 2017,164(13):E422-E427. |
[40] | Cheng X H, Yin H Y, Wang D H. Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3[J]. Corrosion Science, 2018,141:168-174. |
[41] | Wang P L, Du K F, Dou Y P, et al. Corrosion behaviour and mechanism of nickel anode in SO42- containing molten Li2CO3-Na2CO3-K2CO3[J]. Corrosion Science, 2020,166:108450. |
[42] | Du K F, Yu R, Gao M X, et al. Durability of platinum coating anode in molten carbonate electrolysis cell[J]. Corrosion Science, 2019,153:12-18. |
[43] | Moomaw W, Burgherr P, Heath G, et al. Annex II: Meth-odology[M]//Edenhofer O, Pichs-Madruga R, Sokona Y, et al. IPCC special report on renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press, 2011: 10-11. |
[1] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
[2] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
[3] | 张 波, 刘 佳, 刘晓晨, 李德军. 硫在不同碳载体材料中的电化学性能研究[J]. 电化学(中英文), 2019, 25(6): 749-756. |
[4] | 张亚莉,张鸣显,郭腾达,赵彦杰,于升学. 玻碳材料脉冲电沉积纳米晶体镍的制备及其性能研究[J]. 电化学(中英文), 2018, 24(1): 40-45. |
[5] | 林 顿,张熙悦,曾银香,于明浩,卢锡洪,童叶翔. 高性能碳基与过渡金属化合物基超级电容器电极材料的研究进展[J]. 电化学(中英文), 2017, 23(5): 560-580. |
[6] | 叶江林,朱彦武. 氢氧化钾活化制备超级电容器多孔碳电极材料[J]. 电化学(中英文), 2017, 23(5): 548-559. |
[7] | 黄涛,陶广智,杨重庆,鲁登,马列,吴东清. 氮掺杂碳片的模板诱导制备及其在超级电容器中的应用[J]. 电化学(中英文), 2017, 23(5): 604-609. |
[8] | 蒋 孛, 张莉娜, 秦先贤, 蔡文斌. 在TiO2纳米阵列上电沉积RuO2用于CO2电还原[J]. 电化学(中英文), 2017, 23(2): 238-244. |
[9] | 宋宇桥,朱华,赵光金,吴文龙,周寿斌,汪的华. CO2资源化转化纳米碳材料对硫酸盐化铅盘电极的活化性能研究[J]. 电化学(中英文), 2016, 22(4): 425-432. |
[10] | 杨少华,王 君,赖晓晖,王浩然. LiF-BaF2-LiCl熔盐体系中Li+的电化学行为[J]. 电化学(中英文), 2016, 22(3): 306-310. |
[11] | 刘芳芳,彭洪亮,廖世军. 蚕茧衍生的氮氟共掺杂碳基催化剂在碱性介质中的氧还原电催化性能的研究[J]. 电化学(中英文), 2016, 22(2): 164-175. |
[12] | 梁 骥, 闻 雷, 成会明, 李 峰. 碳材料在电化学储能中的应用[J]. 电化学(中英文), 2015, 21(6): 505-517. |
[13] | 何水剑,陈 卫. 碳基三维自支撑超级电容器电极材料研究进展[J]. 电化学(中英文), 2015, 21(6): 518-533. |
[14] | 周兰, 余爱水. 锂硫电池硫碳复合正极材料研究现状及展望[J]. 电化学(中英文), 2015, 21(3): 211-220. |
[15] | 姜晶, 王佳, . 液相分散程度对气/液/固多相体系腐蚀行为的影响[J]. 电化学(中英文), 2009, 15(2): 135-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||