[1] Ge J P, Wang J, Zhang H X, et al. High ethanol sensitive SnO2 microspheres[J].Sensor Actual B, 2006,113(2):937-943.
[2] Wang H Z, Liang J B, Fan H, et al. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres[J]. J Solid State Chem, 2008,181 (1):122-129.
[3] Leite E R, Weber I T, Longo E, et al. A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications[J].Adv Mater, 2000,12(13):965-968.
[4] Wang L W, Wang S R, Wang Y S, et al. Synthesis of hierarchical SnO2 nanostructures assembled with nanosheets and their improved gas sensing properties[J].Sensor and Actuators B:Chemical,2013,188:85-93.
[5] Wang W W, Zhu Y J, Yang L X, Nanosheets:hydrothermal preparation,formation mechanism,
and photocatalytic properties[J]. Adv Funct Mater, 2007,17(1):59-64.
[6] Lou X W, Wang Y, Yuan C L, et al. Template-free synthesis of SnO2 hollow nanostructure with high lithium storage capacity[J]. Adv Mater. 2006,18(17):2325-2329.
[7] Li X F, Meng X B, Liu J, et,al, Y Zhang, Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto grapheme nanosheets for enhanced lithium storage[J].
Advanced Functional Materials, 2012,22(8) :1647-1654.
[8] Wang H, Liang Q Q , Wang W J, et al. Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage[J].American Chemical Society,2011,11,
2942-2947.
[9] Li Y M, Lv X , Lu J, et al. Preparation of SnO2-nanocrystal/grapheme-nanosheets composition
and their lithium storage ability[J]. Phys Chem C, 2010,114(49):21770-21774.
[10] Wang C, Zhou Y, Ge M Y, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity[J]. J Am Chem Soc, 2010,132(1):46-47.
[11] Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance of monolithic macropor
-ous carbon electrodes for lithium-ion secondary batteries[J]. Adv Funct Mater, 2005,15(4):547-
556.
[12] Liu J, Huang J M, Hao L L, et al. SnO2 nano-spheres/grapheme hybrid for high performance lithium ion battery anodes[J].Ceram Int,2013,39(8):8623-8627.
[13] Wang M S, Lei M, Wang Z Q, et al. Scalable preparation of porous micron SnO2/C
composites as high performance anode material for lithium ion battery[J]. J Power Sources,2016,309,238-244.
[14] Kwon C W, Campet G, Portier J, et al. A new single molecular precursor route to fluorine-
doped nanocrystalline tin oxide anodes for lithium batteries[J]. J Inorg Mater,2001,3(3):211-214.
[15] Ha H W, Kim K, Borniol M D, et al. Fluorine-doped nanocrystalline SnO2 powders prepared
via a single molecular precursor method as anode materials for Li-ion batteries[J]. J Solid State Chem,2006,179(3):702-707.
[16] Hui C C, Chen S Y. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol[J]. J Phys Chem C, 2007,111(20):7256-7259.
[17] Mali S S, Shim C S, Kim H, et al. Hierarchical SnO2 microspheres prepared by hydrothermal process for efficient improvement of dye-sensitized solar cell properties[J]. Journal of Nanopartic-
Le Research,2015,17(12):1-13.
[18] Sudhaparimala S, Vaishnavi M. Biological synthesis of nano composite SnO2-ZnO-Screening
for efficient photocatalytic degradation and antimicrobial activity[J]. MaterialsToday:Proceedings,
2016,3(6);2373-2380.
[19] Moghadam L N, Karimabad A E B, Niasari M S, et al. Synthesis and characterization of SnO2 nanoparticles prepared by a facile precipitation method[J]. Journal of Nanostructures,2015,7(5):47
-53.
[20] Liu B, Guo Z P, Du G D, et al. In situ synthesis of ultra-fine, porous, tin oxide-carbon nano-
composites via a molten salt method for lithium-ion batteries[J]. Journal of Power Sources,2010,
195(16):5382-5386.
[21] Wang Y, Lee J Y, Chen B H. Microemulsion syntheses of Sn and SnO2-graphite nanocomposi
-te anodes for Li-ion batteries[J]. Journal of Vegetation Science,2004,151(4):744-760.
[22] Gu L G N(古丽戈娜), Nu R M G L(努热曼古丽), Zhang W H(张文河),et al. The study on using sea-urchin like SnO2 nano -spheres catalyst and its effect of CO2 on the performance of electrochemical reduction[J].Acta Sciencetiae Circumstantiae(环境科学学报), 2016,34(3):
102-106.
[23] Yang R, Gu Y, Li Y, et al. Self-assembled 3-D flower-shaped SnO2 nanostructures with
improved electrochemical performance for lithium storage[J]. Acta Materialia, 2010, 58(3):866-
874.
[24] Gao G, Tao Y, Jiang J Y. Environmentally benign and selective reduction of nitroarenes with Fe in pressurized CO2-H2O medium [J]. Green Chemistry, 2008, 10: 439-441.
[25] Jiang H F, Dong Y S, et al. Water as a direct hydrogen donor in supercritical carbon dioxide: A novel and efficient Zn-H2O-CO2 system for chemoselective reduction of Nitrobenzenes to Anilines [J]. Chinese Journal of Chemistry, 2008, 26: 1407-1410.
[26] You H, Wu D H, Yao J, et al. Photo-degradation of the nitrobenzene in water[J]. Journal of Safety and Environment[J], 2008, 8(2): 16-19.
[27] Ma C A, Tong S P, Gao X P, et al. Electrosynthesis of 3,5-Dichloroaniline[J]. You Ji Hua Xue, 1998, 18: 334-336.
[28] Li Y T, Yang Y, Sun Y X, et al. A novel reaction system for cogeneration of chemicals and electric energy by electrochemical reduction of Nitrobenzene with Iron [J].Int. J. Electrochem. Sci,
2016,11:3502-3511. |