电化学(中英文) ›› 2013, Vol. 19 ›› Issue (1): 6-16. doi: 10.61558/2993-074X.2094
• 电化学材料基础与表界面研究专辑(中国科学院化学研究所 万立骏院士主编) • 上一篇 下一篇
阳耀月,张涵轩,蔡文斌*
收稿日期:
2012-06-04
修回日期:
2012-06-30
出版日期:
2013-02-28
发布日期:
2012-07-05
通讯作者:
蔡文斌
E-mail:wbcai@fudan.edu.cn
基金资助:
YANG Yao-yue, ZHANG Han-xuan, CAI Wen-bin*
Received:
2012-06-04
Revised:
2012-06-30
Published:
2013-02-28
Online:
2012-07-05
Contact:
CAI Wen-bin
E-mail:wbcai@fudan.edu.cn
摘要: 本文主要介绍了近年作者课题组在电化学衰减全反射表面增强红外光谱技术上的研究进展,包括硅柱窗口反射面上各种膜电极的湿法制备、宽频检测复合红外窗口和内、外反射可切换光谱池的设计与构建.
中图分类号:
阳耀月, 张涵轩, 蔡文斌. 电化学表面增强红外光谱技术进展[J]. 电化学(中英文), 2013, 19(1): 6-16.
YANG Yao-yue, ZHANG Han-xuan, CAI Wen-bin. Recent Experimental Progresses on Electrochemical ATR-SEIRAS[J]. Journal of Electrochemistry, 2013, 19(1): 6-16.
[1] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 1980, 45(3): 201-204.[2] Osawa M, Kuramitsu M, Hatta A, et al. Electromagnetic effect in enhanced infrared-ibsorption of adsorbed molecules on thin metal-films[J]. Surface Science, 1986, 175(3): L787-L793.[3] Krauth O, Fahsold G, Pucci A. Asymmetric line shapes and surface enhanced infrared absorption of CO adsorbed on thin iron films on MgO(001)[J]. Journal of Chemical Physics, 1999, 110(6): 3113-3117.[4] Merklin G T, Griffiths P R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver Films[J]. Langmuir, 1997, 13(23): 6159-6163.[5] Osawa M. Surface-enhanced infrared absorption spectroscopy[M]. J M Chalmers, P R Griffiths (Editors.). Handbook of vibrational spectroscopy. Chichester, UK, John Wiley & Sons, 2002, 1: 785-799.[6] Tian Z Q, Ren B, Wu D Y. Surface enhanced raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures[J]. Journal of Physical Chemistry B, 2002, 106(37): 9463-9483.[7] Xue X K, Huo S J, Yan Y G, et al. In situ surface-enhanced vibrational spectroscopies on isonicotinic acid adsorbed on gold electrodes in alkaline solutions[J]. Acta Chimica Sinica, 2007, 65(15): 1437-1442.[8] Li Q X, Xue X K, Xu Q J, et al. Application of surface-enhanced infrared absorption spectroscopy to investigate pyridine adsorption on platinum-group electrodes[J]. Applied Spectroscopy, 2007, 61(12): 1328-1333.[9] Diao Y X, Han M J, Wan L J, et al. Adsorbed structures of 4,4'-bipyridine on Cu(111) in acid studied by STM and IR [J]. Langmuir, 2006, 22(8): 3640-3646.[10] Yan Y G, Yang Y Y, Peng B, et al. Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS[J]. Journal of Physical Chemistry C, 2011, 115(33): 16378-16388.[11] Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study[J]. Journal of the American Chemical Society, 2011, 133(38): 14876-14879.[12] Samjeske G, Komatsu K, Osawa M. Dynamics of CO oxidation on a polycrystalline platinum electrode: A time-resolved infrared study[J]. Journal of Physical Chemistry C, 2009, 113(23): 10222-10228.[13] Osawa M, Komatsu K, Samjeske G, et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum[J]. Angewandte Chemie-International Edition, 2011, 50(5): 1159-1163.[14] Zhou W, Zhang Y, Abe M, et al. Surface coordination of nitric oxide to a self-assembled monolayer of a triruthenium cluster: An in situ infrared spectroscopic study[J]. Langmuir, 2008, 24, 15: 8027-8035.[15] Ma M, Yan Y G, Wang J Y, et al. A study of NO adducts of iron protoporphyrin IX adlayer on Au electrode with in situ ATR-FTIR spectroscopy[J]. Journal of Physical Chemistry C, 2007, 111(24): 8649-8654.[16] Ma M, Yan Y G, Huo S J, et al. In situ surface enhanced IR absorption spectroscopy on CO adducts of iron protoporphyrin IX self-assembled on a Au electrode[J]. Journal of Physical Chemistry B, 2006, 110(30): 14911-14915.[17] Jiang X U, Ataka K, Heberle J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry C, 2008, 112(3): 813-819.[18] Osawa M. Dynamic processes in electrochemical reactions studied by surface enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bulletin of the Chemical Society of Japan, 1997, 70(12): 2861-2880.[19] Lu G Q, Sun S G, Chen S P, et al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 19-23.[20] Chen Y J, Sun S G, Chen S P, et al. Anomalous IR properties of nanostructured films created by square wave potential on an array of Pt microelectrodes: an in situ microscope FTIR study of CO adsorption[J]. Langmuir, 2004, 20(23): 9920-9925.[21] Yan Y-G, Peng B, Yang Y-Y, et al. Interfacial water at a CO-predosed platinum electrode: A surface enhanced infrared study with strong hydrogen evolution reaction control[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5584-5592.[22] Bjerke A E, Griffiths P R, Theiss W. Surface enhanced infrared absorption of CO on platinized platinum[J]. Analytical Chemistry, 1999, 71(10): 1967-1974.[23] Miyake H, Osawa M. Surface-enhanced infrared spectrum of CO adsorbed on Cu electrodes in solution[J]. Chemistry Letters, 2004, 33(3): 278-279.[24] Rodes A, Orts J M, Perez J M, et al. Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy[J]. Electrochemistry Communications, 2003, 5(1): 56-60.[25] Delgado J M, Orts J M, Rodes A. ATR-SRIRAS study of the adsorption of acetate anions at chemically deposited silver thin film electrodes[J]. Langmuir, 2005, 21(19): 8809-8816.[26] Ataka K, Yotsuyanagi T, Osawa M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry, 1996, 100(25): 10664-10672.[27] Cai W B, Wan L J, Noda H, et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998, 14(24): 6992-6998.[28] Ataka K, Osawa M. In Situ infrared study of cytosine adsorption on gold electrodes[J]. Journal of Electroanalytical Chemistry, 1999, 460(1-2): 188-196.[29] Osawa M, Yoshii K. In situ and real-time surface-enhanced infrared study of electrochemical reactions[J]. Applied Spectroscopy, 1997, 51(4): 512-518.[30] Sun S G, Cai W B, Wan L J, et al. Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy[J]. Journal of Physical Chemistry B, 1999, 103(13): 2460-2466.[31] Wandlowski T, Ataka K, Pronkin S, et al. Surface enhanced infrared spectroscopy - Au(111-20 nm)/sulphuric acid - new aspects and challenges[J]. Electrochimica Acta, 2004, 49(8): 1233-1247.[32] Watanabe M, Zhu Y M, Uchida H. Oxidation of carbon monoxide at a platinum film electrode studied by fourier transform infrared spectroscopy with attenuated total reflection technique[J]. Langmuir, 1999, 15(25): 8757-8764.[33] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. Journal of Physical Chemistry B, 2004, 108(8): 2654-2659.[34] Ohta N, Nomura K, Yagi I. Electrochemical modification of surface morphology of Au/Ti bilayer films deposited on a Si prism for in situ surface enhanced infrared absorption (SEIRA) spectroscopy[J]. Langmuir, 2010, 26(23): 18097-18104.[35] Cai W B, Sun S G, Noda H, et al. Surface enhanced infrared study of melocular adsorption on transition metal electrodes. 197th Meeting, Toronto, the Electrochemical Society. 2000.[36] Pronkin S, Wandlowski T. ATR-SEIRAS-an Approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes[J]. Surface Science, 2004, 573(1): 109-127.[37] Nowak C, Luening C, Knoll W, et al. A Two-layer gold surface with improved surface enhancement for spectro-electrochemistry using surface enhanced infrared absorption spectroscopy[J]. Applied Spectroscopy, 2009, 63(9): 1068-1074.[38] Miyake H, Ye S, Osawa M. Electroless deposition of gold thin films on silicon for surface enhanced infrared spectroelectrochemistry[J]. Electrochemistry Communications, 2002, 4(12): 973-977.[39] Yan Y G, Li Q X, Huo S J, et al. Ubiquitous strategy for probing ATR surface enhanced infrared absorption at platinum group metal-electrolyte interfaces[J]. Journal of Physical Chemistry B, 2005, 109(16): 7900-7906.[40] Huo S J, Xue X K, Yan Y G, et al. Extending in situ attenuated-total-reflection surface enhanced infrared absorption spectroscopy to Ni electrodes[J]. Journal of Physical Chemistry B, 2006, 110(9): 4162-4169.[41] Miyake H, Hosono E, Osawa M, et al. Surface enhanced infrared absorption spectroscopy using chemically deposited Pd thin film electrodes[J]. Chemical Physics Letters, 2006, 428, 4-6: 451-456.[42] Miki A, Ye S, Osawa M. Surface-enhanced IR absorption on platinum nanoparticles: An application to real-time monitoring of electrocatalytic reactions[J]. Chemical Communications, 2002(14): 1500-1501.[43] Chen Y X, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Journal of the American Chemical Society, 2003, 125(13): 3680-3681.[44] Cuesta A, Cabello G, Gutierrez C, et al. Adsorbed formate: The key intermediate in the oxidation of formic acid on platinum electrodes[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20091-20095.[45] Yan Y G, Li Q X, Huo S J, et al. Surface-enhanced IR absorption effect of Pt and Ru nanofilms fabricated by all-wet processes[J]. Acta Chimica Sinica, 2005, 63(6): 545-549.[46] Huo S J, Wang J Y, Yao J L, et al. Exploring electrosorption at iron electrode with in situ surface enhanced infrared absorption spectroscopy[J]. Analytical Chemistry, 2010, 82(12): 5117-5124.[47] Huo S J, Wang J Y, Sun D L, et al. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode[J]. Applied Spectroscopy, 2009, 63(10): 1162-1167.[48] Li Q X, Yan Y G, Xu Q J, et al. Attenuated-total-reflection surface enhanced infrared absorption spectroscopy on cadmium electrode[J]. Chemical Journal of Chinese Universities Chinese, 2006, 27(12): 2414-2416.[49] Lu G Q, Sun S G, Cai L R, et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: abnormal infrared effects (AIRES)[J]. Langmuir, 2000, 16(2): 778-786.[50] Huo S J, Xue X K, Li Q X, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface enhanced IR absorption spectroscopy[J]. Journal of Physical Chemistry B, 2006, 110(51): 25721-25728.[51] Huo S J, Li Q X, Yan Y G, et al. Tunable surface enhanced infrared absorption on Au nanofilms on Si fabricated by self-assembly and growth of colloidal particles[J]. Journal of Physical Chemistry B, 2005, 109(33): 15985-15991.[52] Huang B B, Wang J Y, Huo S J, et al. Facile fabrication of silver nanoparticles on silicon for surface-enhanced infrared and raman analysis[J]. Surface and Interface Analysis, 2008, 40(2): 81-84.[53] Wang H F, Yan Y G, Hu S J, et al. Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications[J]. Electrochimica Acta, 2007, 52(19): 5950-5957.[54] Wang J Y, Peng B, Xie H N, et al. In situ ATR-FTIR spectroscopy on Ni-P alloy electrodes[J]. Electrochimica Acta, 2009, 54(6): 1834-1841.[55] Wang C, Peng B, Xie H N, et al. Facile fabrication of Pt, Pd and Pt-Pd alloy films on Si with tunable infrared internal reflection absorption and synergetic electrocatalysis[J]. Journal of Physical Chemistry C, 2009, 113(31): 13841-13846.[56] Martin H B, Morrison P W. Application of a diamond thin film as a transparent electrode for in situ infrared spectroelectrochemistry[J]. Electrochemical and Solid State Letters, 2001, 4(4): E17-E20.[57] Adzic R R, Shao M H, Liu P. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. Journal of the American Chemical Society, 2006, 128(23): 7408-7409.[58] Xue X K, Liu J H, Wang J Y, et al. Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes[J]. Analytical Chemistry, 2008, 80(1): 166-171.[59] Ohman M, Persson D, Leygraf C. In situ ATR-FTIR studies of the aluminium/polymer interface upon exposure to water andelectrolyte[J]. Progress in Organic Coatings, 2006, 57(1): 78-88.[60] Ulrich R. Theory of the prism-film coupler by plane-wave analysis[J]. Journal of the Optical Society of America, 1970, 60(10): 1337-1350.[61] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie-International Edition, 2006, 45(6): 981-985.[62] Chen Y X, Ye S, Heinen M, et al. Application of in-situ attenuated total reflection-fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures[J]. Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.[63] Liao L W, Liu S X, Tao Q A, et al. A method for kinetic study of methanol oxidation at Pt electrodes by electrochemical in situ infrared spectroscopy[J]. Journal of Electroanalytical Chemistry, 2011, 650(2): 233-240.[64] Heinen M, Chen Y X, Jusys Z, et al. In situ ATR-FTIRS coupled with on-line DEMS under controlled mass transport conditions - a novel tool for electrocatalytic reaction studies[J]. Electrochimica Acta, 2007, 52(18): 5634-5643.[65] Zhang H X, Wang S H, Jiang K, et al. In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH[J]. Journal of Power Sources, 2012, 199: 165-169.[66] Wang J Y, Kang Y Y, Yang H, et al. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. Journal of Physical Chemistry C, 2009, 113, 19: 8366-8372.[67] Peng B, Wang H F, Liu Z P, et al. Combined surface-enhanced infrared spectroscopy and first-principles study on electro-oxidation of formic acid at Sb-modified Pt electrodes[J]. Journal of Physical Chemistry C, 2010, 114(7): 3102-3107.[68] Peng B, Wang J Y, Zhang H X, et al. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid[J]. Electrochemistry Communications, 2009, 11(4): 831-833. |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[3] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[4] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[5] | 丁伟杰, 杨春晖, 冯钟涛, 陆仕荣, 程旭. 钯催化电化学烯丙位4-吡啶化反应中的配体作用研究[J]. 电化学(中英文), 2024, 30(5): 2313003-. |
[6] | 李鹏飞, 寇广生, 亓丽萍, 仇友爱. 电化学脱卤氘化研究进展[J]. 电化学(中英文), 2024, 30(5): 2313005-. |
[7] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[8] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[9] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[10] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[11] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[12] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[13] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[14] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[15] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||