欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• •    

基于电化学发光的砷(III)传感器:采用丝网印刷金电极上的鲁米诺

哈梅萨·哈梅萨a,b, 伊斯娜伊妮·拉赫玛瓦蒂a, 安德烈亚·菲奥拉尼c, 永永康昭c, 恩妮·库斯里尼d, 阿安·约翰·瓦尤迪b, 阿塞普·赛富米拉a, 特里比达萨里·A·伊万迪尼a,*   

  1. a. 印度尼西亚大学数学与自然科学学院化学系,德波克市,邮编16424,印度尼西亚; b. 印度尼西亚万丹省南丹戎市BJ哈比比科技园国家研究与创新署海洋学研究中心; c.日本神奈川县横滨市日吉3-14-1庆应义塾大学化学系; b.印度尼西亚大学化学工程系,德波克,16424,印度尼西亚
  • 发布日期:2025-11-14
  • 通讯作者: 特里比达萨里·A·伊万迪尼 E-mail:ivandini.tri@sci.ui.ac.id

An Electrochemiluminescence-Based Arsenic (III) Sensor using Luminol on Screen-Printed Gold Electrodes

Harmesa Harmesaa,b, Isnaini Rahmawatia, Andrea Fioranic, Yasuaki Einagac, Eny Kusrinid, A'an Johan Wahyudib, Asep Saefumillaha, and Tribidasari A. Ivandinia,*   

  1. a. Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia; b. Research Center for Oceanology, National Research and Innovation Agency, BJ. Habibie S&T Complex, South Tangerang, Banten, 15310, Indonesia; c. Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan; d. Department of Chemical Engineering, Universitas Indonesia, Depok, 16424, Indonesia.
  • Online:2025-11-14
  • Contact: Tribidasari A. Ivandini E-mail:ivandini.tri@sci.ui.ac.id

摘要: 在丝网印刷金电极上研究了鲁米诺的电化学发光(ECL),用于简单而灵敏地检测砷离子(As(III))。采用循环伏安法(CV)研究鲁米诺的电化学行为,并评估砷离子对ECL体系的影响;同时以过氧化氢作为共反应物,在碱性条件下增强鲁米诺发光效率。通过精细优化pH值、扫描速率及过氧化氢/鲁米诺浓度等关键参数,实现电极性能最优化。砷(III)的存在对鲁米诺/H₂O₂电化学发光系统产生淬灭效应,导致在1 nM至150 µM的宽浓度范围内电化学发光信号呈线性衰减。该系统展现出1.21 nM的低检测限,并具有2.27%相对标准偏差的优异重复性,彰显其在砷(III)检测中的灵敏度与可靠性。本研究的关键优势在于成功采用市售裸电极——这类电极易于获取且无需改性,充分验证了其在ECL砷检测中的有效性。优化后的pH 10缓冲液在提升砷检测选择性方面发挥关键作用:该条件既促进鲁米诺最佳去质子化反应,又确保砷保持溶解态,而其他潜在金属离子干扰物则更易形成固态金属(氢)氧化物。 此外,该研发的传感器成功应用于海水基质中的砷(III)检测,证明其作为基于电化学发光技术的砷传感器在环境应用中具有可靠且高效的潜力。

关键词: 砷(III), 电化学发光, 金电极, 过氧化氢, 淬火效应

Abstract: Electrochemiluminescence (ECL) of luminol has been studied on a screen-printed gold electrode for a simple and sensitive detection of arsenic ions (As(III)). Cyclic voltammetry (CV) was applied as the proposed technique to study luminol's electrochemical behavior and to evaluate the arsenic's effect in the ECL system, while hydrogen peroxide served as a co-reactant to enhance luminol’s light emission under alkaline conditions. To achieve optimal electrode performance, key parameters including pH, scan rate, and the concentrations of H2O2 and luminol were carefully optimized. The presence of As(III) induced a quenching effect on the luminol/H2O2 ECL system, leading to a linear decrease in ECL signal across the wide concentration range of 1 nM to 150 µM. The system demonstrated a low detection limit of 1.21 nM and exhibited excellent repeatability with a relative standard deviation of 2.27%, highlighting its sensitivity and reliability for As(III) detection. A key advantage of this study was the successful use of commercial bare electrodes, which were readily available and required no modifications, proving their effectiveness for ECL-based arsenic sensing. The optimized buffer solution pH of 10 played a critical role in enhancing arsenic detection selectivity, as it facilitated the optimal deprotonation of luminol and ensured arsenic remained in its dissolved state, whereas other potential metal ion interferences were more likely to form solid metal (hydro)oxides. Furthermore, the developed sensor was successfully applied for As(III) detection in a seawater matrix, demonstrating its potential as a robust and effective ECL-based arsenic sensor for environmental applications.

Key words: As(III), Electrochemiluminescence, Gold electrode, H2O2, Quenching effect