[1] Lin V S, Lippert A R, Chang C J. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18): 7131-7135.
[2] Miller E W, Chang C J. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling[J]. Current Opinion in Chemical Biology, 2007, 11(6): 620-625.
[3] Tian Y C, Fan M, Qin Z X, et al. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor[J]. Nature Communications, 2018, 9(1): 1063.
[4] Wu P(吴萍), Cai C X(蔡称心). Horseradish peroxidase-attapulgite clay nanocomposites: Fabrication and application to sensing the extracellular H2O2 released from cells[J]. Journal of Electrochemistry(电化学), 2014, 20(3): 260-265.
[5] Liu H Y, Weng L Y, Yang C. A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells[J]. Microchimica Acta, 2017, 184(5): 1267-1283.
[6] Yagati A K, Choi J. Protein based electrochemical biosensors for H2O2 detection towards clinical diagnostics[J]. Electroanalysis, 2014, 26(6): 1259-1276.
[7] Zhang S Y(张思宇), Wang H J(王会娟), Li S F(李书芳), et al. Carbon composite Fe3O4 nanoparticles based electrochemical sensor for hydrogen peroxide detection[J]. Journal of Electrochemistry(电化学), 2018, 24(3): 279-284.
[8] Zhang Q(张倩), Fu S Y(付时雨), Li H L(李海龙), et al. A rapid method for the determination of hydrogen peroxide concentration[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2104, 34(3): 767-770.
[9] Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala, leaf extract, their antibacterial activity and hydrogen peroxide sensing capability[J]. Arabian Journal of Chemistry, 2017, 10(2): 253-261.
[10] Ding J, Zhong Q, Zhang S L, et al. Simultaneous removal of NOX, and SO2, from coal-fired flue gas by catalytic oxidation-removal process with H2O2[J]. Chemical Engineering Journal, 2014, 243(5): 176-182.
[11] Motaghed R M, Ge L, Jiang H, et al. A facile photoelectrochemical sensor for high sensitive ROS and AA detection based on graphitic carbon nitride nanosheets[J]. Biosensors & Bioelectronics, 2018, 107: 54-61.
[12] Qu P(瞿鹏), Li B X(李保新), Zhang Z J(章竹君). Plant tissue-based chemiluminescence flow biosensor for hydrogen peroxide determination in water samples[J]. Analytical Chemistry(分析化学), 2003, 31(10): 1240-1243.
[13] Jo E J, Mun H, Kim S J, et al. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor[J]. Food Chemistry, 2016, 194: 1102-1107.
[14] Zangheri M, Cevenini L, Anfossi L, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection[J]. Biosensors & Bioelectronics, 2015, 64: 63-68.
[15] Zhang L S, Wong G T F. Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method[J]. Talanta, 1999, 48(5): 1031-1038.
[16] Zhang C, Wang X R, Hou M, et al. Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 13831-13836.
[17] Li L M, Du Z F, Liu S A, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite[J]. Talanta, 2010, 82(5): 1637-1641.
[18] He Y P, Sheng Q L, Zheng J B, et al. Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application[J]. Electrochimica Acta, 2011, 56(5): 2471-2476.
[19] Sun B H, Ni X J, Cao Y H, et al. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb[J]. Biosensors & Bioelectronics, 2017, 91: 354-358.
[20] Nagababu E, Rifkind J M. Reaction of hydrogen peroxide with ferrylhemoglobin: superoxide production and heme degradation[J]. Biochemistry, 2000, 39(40): 12503-12511.
[21] Sun J Y, Huang K J, Zhao S F, et al. Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode[J]. Bioelectrochemistry, 2011, 82(2): 125-130.
[22] Gautam V, Singh K P, Yadav V L. Polyaniline/multiwall carbon nanotubes/starch nanocomposite material and hemoglobin modified carbon paste electrode for hydrogen peroxide and glucose biosensing[J]. International Journal of Biological Macromolecules, 2018, 111: 1124-1132.
[23] Zhao H Y, Zheng W, Meng Z X, et al. Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film[J]. Biosensors & Bioelectronics, 2009, 24(8): 2352-2357.
[24] Jian F F, Qiao Y B, Zhuang R R. Direct electrochemistry of hemoglobin in TATP film: Application in biological sensor[J]. Sensors & Actuators B: Chemical, 2007, 124(2): 413-420.
[25] Feng J J, Xu J J, Chen H Y. Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2005, 585(1): 44-50.
|