[1] Finkel T. Redox-dependent signal transduction[J]. FEBS Letters, 2000, 476(1): 52-54.[2] Wu X M, Hu Y J, Jin J, et al. Electrochemical approach for detection of extracellular oxygen released from Erythrocytes based on graphene film integrated with Laccase and 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)[J]. Analytical Chemistry, 2010, 82(9): 3588-3596.[3] Tate R M, Repine J E. In free radicals in biology[M]. New York: Academic Press, 1984: 199[4] Chen D X, Wang Q, Jin J, et al. Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes[J]. Analytical Chemistry, 2010, 82(6): 2448-2455.[5] Lei C H, Lisdat F, Wollenberger U, et al. Cytochrome c/clay-modified electrode[J]. Electroanalysis, 1999, 11(4): 274-276.[6] Lei C H, Wollenberger U, Jung C, et al. Clay-bridged electron transfer between cytochrome P450cam and electrode[J]. Biochemical and Biophysical Research Communications, 2000, 268(3): 740-744. [7] Chen X L, Hu N F, Zeng Y H, et al. Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions, and clay[J].Langmuir, 1999, 15(20): 7022-7030.[8] Zhou Y L, Hu N F, Zeng Y H, et al. Heme protein-clay films: Direct electrochemistry and electrochemical catalysis[J]. Langmuir, 2002, 18(1): 211-219.[9] Zhou Y L, Li Z, Hu N F, et al. Layer-by-layer assembly of ultrathin films of Hemoglobin and clay nanoparticles with electrochemical and catalytic activity[J].Langmuir, 2002, 18(22): 8573-8579.[10] Charradi K, Forano C, Prevot V, et al. Characterization of hemoglobin immobilized in MgAl-Layered double hydroxides by the coprecipitation method[J]. Langmuir, 2010, 26(12): 9997-10004.[11] Charradi K, Forano C, Prevot V, et al. Direct electron transfer and enhanced electrocatalytic activity of hemoglobin at iron-rich clay modified electrodes[J]. Langmuir, 2009, 25(17): 10376-10383.[12] Xu J M, Li W, Yin Q F, et al. Direct electrochemistry of cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2[J]. Electrochimca Acta, 2007, 52(11): 3601-3606.[13] Xu J M, Li W, Yin Q F, et al. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode[J]. Journal of Colloid and Interface Science, 2007, 315(1): 170-176.[14] Xu J M(徐继明), Han W X(韩文霞), Yin Q F(尹起范), et al. Direct electron transfer of glucose oxidase and glucose biosensor based on nano-structural attapulgite clay matrix[J].Chinese Journal of Chemistry, 2009, 27(11): 2197-2202.[15] Huang J L, Tsai Y C. Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2009, 140(1): 267-272.[16] Yin Y J, Lv Y F, Wu P, et al. Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes[J]. Sensors, 2005, 5(4): 220-234.[17] Szymczyk N H, Kerr B A E, Freeman T A. Involvement of hydrogen peroxide in the differentiation and apoptosis of preosteoclastic cells exposed to arsenite[J]. Biochemical pharmacology, 2006, 72(6): 761-769. |