[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.[2] Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219.[3] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.[4] Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(31): 15008-15023.[5] Cowan A J, Tang J, Leng W, et al. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination[J]. Journal of Physical Chemistry C, 2010, 114(9): 4208-4214.[6] Leng W H, Barnes P R F, Juozapavicius M, et al. Electron diffusion length in mesoporous nanocrystalline TiO2 photoelectrodes during water oxidation[J]. Journal of Physical Chemistry Letters, 2010, 1(6): 967-972.[7] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95(1): 49-68.[8] Cheng X F, Leng W H, Liu D P, et al. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties[J]. Journal of Physical Chemistry C, 2008, 112(23): 8725-8734.[9] Barnes P R F, Anderson A Y, Durrant J R, et al. Simulation and measurement of complete dye sensitised solar cells: Including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour[J]. Physical Chemistry Chemical Physics, 2011, 13(13): 5798-5816.[10] Leng W H, Zhang Z, Cheng S A, et al. Estimation of photoelectrocatalytic activity of titanium oxide film electrodes by ac impedance[J]. Chinese Chemical Letters, 2001, 12(11): 1019-1022.[11] Fei H, Leng W, Li X, et al. Photocatalytic oxidation of arsenite over TiO2: Is superoxide the main oxidant in normal air-saturated aqueous solutions?[J]. Environmental Science & Technology, 2011, 45(10): 4532-4539.[12] Leng W, Fei H, Zhang J. Response to comment on "photocatalytic oxidation of arsenite over TiO2: Is superoxide the main oxidant in normal air-saturated aqueous solutions?"[J]. Environmental Science & Technology, 2011, 45(22): 9818-9819.[13] Leng W H, Li X, Fei H, et al. Comment on "photocatalytic oxidation mechanism of as(III) on TiO2: Unique role of as(iii) as a charge recombinant species"[J]. Environmental Science & Technology, 2011, 45(5): 2028-2029.[14] Leng W H, Cheng X F, Zhang J Q, et al. Comment on "photocatalytic oxidation of arsenite on TiO2: Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors"[J]. Environmental Science & Technology, 2007, 41(17): 6311-6312.[15] Li X, Leng W. Highly enhanced dye sensitized photocatalytic oxidation of arsenite over TiO2 under visible light by I? as an electron relay[J]. Electrochemistry Communictions, 2012, 22(0): 185-188.[16] Li X, Leng W. Regenerated dye-sensitized photocatalytic oxidation of arsenite over nanostructured TiO2 films under visible light in normal aqueous solutions: An insight into the mechanism by simultaneous (photo)electrochemical measurements[J]. Journal of Physical Chemistry C, 2013, 117(2): 750-762. |