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1. Material Characterizations 

 

Fig. S1. XRD patterns of the bare CuO and CuO/SiO2 electrodes. 

 

2. Effect of spin-coating layer on the photoelectrochemical performance 
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Fig. S2. The effect of film thickness (layers) on the photoelectrochemical performance of the 

electrodes. I-V curves in the dark and under white illumination for (a) CuO and (c) CuO 

electrodes with SiO2 modification (CuO/SiO2); the corresponding I-t curves at -0.2 VSCE under 

illumination: (b) CuO and (d) CuO/SiO2 electrodes; (e) the spin-coating layer-dependence of 

photoelectrochemical performance for CuO electrodes; (f) photocurrent as a function of SiO2 

coating layer for CuO electrodes; (g) stability plots of CuO and CuO/SiO2 electrodes after 

testing under illumination at –0.2 VSCE. 

 

3. Steady-state photocurrent at various light intensities 
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Fig. S3. The photocurrent at applied potentials indicated, as a function of light intensity for (a) 

CuO and (b) CuO/SiO2 electrodes. 

 

4. Measurement of surface states 

The characteristics of the surface states were investigated by EIS as reported 

previously [1–5]. The impedance responses due to filling and emptying of the 

interface states give rise to an additional response ZSS. The measured ZSS is 

consisted of electrolyte resistance RS and a serial pseudo-capacitance Cp, which is 

the response of interface states. The total measured capacitance is simply the sum 

of Cp and CSC, which can be obtained from real and imaginary parts of the 

measured impedance Re(Z) and Im(Z), respectively, as described by Eqs. S1 and 

S2. 

 𝐶p = [𝜔𝐼𝑚(𝑍)(1 + 𝐷2)]−1  (S1) 

 𝐷 = [𝑅𝑒(𝑍) − 𝑅s]/[−𝐼𝑚(𝑍)] (S2) 

According to previous reports [1–5], the different positions of the capacitance 

peak may involve diverse surface states and the height of the capacitance peak 

represents the density of the surface states. The curve of applied potential and 

parallel capacitance (Cp-E) can be used to distinguish various surface states. 

Similar to the Mott-Schottky analysis, the impedance due to surface states was 

measured by performing a potential scan from positive to negative (0.1~–0.4 VSCE) 

with a step of 50 mV at a fixed frequency with a sinusoidal amplitude of 3 mV.  

The results in the Cp-E curves of CuO and CuO/SiO2 electrodes in the dark and 

under illumination after subtraction of space charge component are shown in Fig. 

S4. The appearance of one peak at ~0 VSCE is observed for both electrodes in the 
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dark and under illumination, stating that a surface state locates at the energy level 

of ~0 VSCE. Besides, the height of the capacitance peak is increased significantly 

under illumination for both electrodes, indicating that the photogenerated 

intermediates can be stored in these surface states. Furthermore, the peak height 

of the CuO/SiO2 electrode under illumination is much greater than that of the CuO 

electrode, implying greater accumulation of electron at the electrode surface. This 

is in consistent with the greater surface charge density of the CuO/SiO2 electrode 

as shown in Figure 3. 

 

 

Fig. S4. Cp-E curves of CuO and CuO/SiO2 electrodes in the dark and under illumination (100 

mW·cm
–2

) for the CuO electrodes (a) in the dark and (b) under illumination; and the CuO/SiO2 

electrodes (c) in the dark and (d) under illumination. 

 

5. Photogenerated surface charge at various light intensities 
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Fig. S5. The surface charge density plots at the indicated applied potential and under different 

light intensities for (a) CuO and (b) CuO/SiO2 electrodes. 

 

6. EIS response of CuO photoelectrodes 
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Fig. S6. EIS responses at various potentials and light intensities indicated for the CuO 

electrodes: Nynquist plots: (a), (c), (e), (g) and (i); Bode plots: (b), (d), (f), (h) and (j). 

 

7. EIS response of CuO/SiO2 photoelectrodes 
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Fig. S7. EIS responses at various potentials and light intensities indicated for the CuO/SiO2 

electrodes: Nynquist plots: (a), (c), (e), (g) and (i); Bode plots: (b), (d), (f), (h) and (j). 

 

8. Charge density-dependence of characteristic angular frequency 𝐦𝐚𝐱
𝟏

 

 

Fig. S8. Relationship of the kct (𝜔max

1
) and the surface charge density Q at different applied 

potentials. (a) CuO electrode, (b) CuO/SiO2 electrode. 
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9. Rate law for CuO electrode with 3 layers of SiO2 

 

Fig. S9. (a) The reactant concentration dependence of the rate law in terms of photocurrent (Jph 

vs. Q) for the CuO electrodes with 3 layers of SiO2; (b) relationship between k0 and applied 

potential. 

 

Table S1. Rate equations for photoelectrochemical water splitting over CuO with 3 layers of 
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0.0 𝐽ph = −4.09 ∗ exp(0.38 ∗ [𝑒s]) ∗ [𝑒s] 

-0.1 𝐽ph = −5.41 ∗ exp(0.19 ∗ [𝑒s]) ∗ [𝑒s] 

-0.2 𝐽ph = −15.37 ∗ exp(0.11 ∗ [𝑒s]) ∗ [𝑒s] 
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which is the key difference between other reports [6–9, 13] and ours (see Table S2). 

This unconventional phenomenon of a reactant concentration dependent rate 

constant has been reported for the water photooxidation on several n-type 

semiconductors and can be explained as follow: The accumulation of such a high 

concentration photogenerated charge on the electrode surface (10
13

~10
14

 cm–
2

 for 

CuO electrodes) will result in the applied potential redistribution between the 

space charge layer and the Helmholtz layer (Eq. 7), and consequently affecting the 

activation energy for charge transferring across the interface of 

electrode/electrolyte (partial Fermi level pinning). Thus, the surface charge density 

dependent kct is observed and the reactant concentration dependence of rate law 

in terms of photocurrent can be expressed byEq. 9. Additionally, the differential 

rate equation for the photoelectrochemical water splitting over the Cu2O/SiO2 

electrodes is determined which, to the best of our knowledge, has not been 

reported so far, and is another important difference between our work and 

relevant literatures. 

Table S2. The comparison between the rate equation of this work and the results in literatures 

Electrode kct Reaction equation Ref. 

CuO (p-type) 

𝑘ct

= 𝑘0exp⁡(𝐴[𝑒s]) 
𝐽ph = 𝑘0exp⁡(𝐴[𝑒s])[𝑒s] 

This 

work 

CuO/SiO2 (p-

type) 

𝑘ct

= 𝑘0exp⁡(𝐴[𝑒s]) 
𝐽ph = 𝑘0exp⁡(𝐴[𝑒s])[𝑒s] 

This 

work 

WO3 (n-type) 

𝑘ct

= 𝑘0exp⁡(𝐴[ℎs]) 
𝐽ph = 𝑘0exp⁡(𝐴[ℎs])[ℎs] [2] 

TiO2 (n-type) 

𝑘ct

= 𝑘0exp⁡(𝐴[ℎs]) 
𝐽ph = 𝑘0exp⁡(𝐴[ℎs])[ℎs] [14] 

Cu2O/RuOX (p-

type) 

constant 𝐽ph = 𝑘ct([𝑒s])
2
 [6] 

α-Fe2O3 (n-

type) 

constant 

𝐽ph = 𝑘ct([ℎs])
𝑛
 (n=1 at low charge density; n=3 

at high charge density) 

[7] 

TiO2 (n-type) constant 

𝐽ph = 𝑘ct([ℎs])
𝑛
 (n=2 at pH 0.6 and 6.7; n=3 at 

pH13.6) 

[8] 
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WO3 (n-type) constant 

𝐽ph = 𝑘ct([ℎs])
𝑛
 (n=1 at low charge density; 

n=2.5 at high charge density) 

[9] 

BiVO4 (n-type) constant 

𝐽ph = 𝑘ct([ℎs])
𝑛
 (n=1 at low charge density; n=3 

at high charge density) 

[10] 

Note: [es] and [hs] are the surface electron density and surface hole density, respectively, kct is 

the charge transfer rate constant, n is the reaction order with respect to charge density, and Jph 

is the photocurrent. More details please refer to the corresponding references. 
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