欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2024, Vol. 30 ›› Issue (8): 2309241.  doi: 10.61558/2993-074X.3454

• 论文 • 上一篇    下一篇

不同荷电状态18650 LiFePO4电池的排放气体燃爆特性数值分析

王世林a, 龚旭a, 刘丽娜a, 李奕彤a, 张宸语a, 许乐俊a, 冯旭宁b, 王淮斌a,*()   

  1. a中国人民警察大学,河北 廊坊 065000
    b清华大学汽车安全与能源国家重点实验室,北京 100084
  • 收稿日期:2023-10-24 出版日期:2024-08-28 发布日期:2024-03-11

Numerical Analysis of Explosion Characteristics of Vent Gas from 18650 LiFePO4 Batteries with Different States of Charge

Shi-Lin Wanga, Xu Gonga, Li-Na Liua, Yi-Tong Lia, Chen-Yu Zhanga, Le-Jun Xua, Xu-Ning Fengb, Huai-Bin Wanga,*()   

  1. aChina People’s Police University, Langfang 065000, China
    bState Key Laboratory of Automotive Safety and Energy Tsinghua University, Beijing 100084, China
  • Received:2023-10-24 Published:2024-08-28 Online:2024-03-11
  • Contact: *Huai-Bin Wang, E-mail: wanghuaibin@cppu.edu.cn

摘要:

锂离子电池排放气体的燃爆特性是决定锂离子电池火灾危险性的关键因素,因此探究锂离子电池排放气体的燃爆危害性可以为储能电站和新能源汽车燃爆事故救援与防护提供指导,从而促进锂离子电池的应用与发展。建立在这一认识之上,结合前人关于锂离子电池产气的研究,本文开展了不同SOC的18650磷酸铁锂电池热失控排放气体的燃爆风险研究。通过“消元”的方法计算含有二氧化碳惰性气体影响的混合气体爆炸极限,利用Chemkin-Pro软件对电池排放气体/空气的层流火焰速度与绝热火焰温度进行数值模拟,并对体系内的自由基浓度与主要基元反应敏感系数进行分析,综合评估电池排放气体燃爆危害性。研究发现100% SOC电池排放气体的爆炸下限最低,反应体系中具有抑制作用的基元反应敏感系数较低且自由基浓度更高,因此具有最大的层流火焰速度与绝热火焰温度。电池排放气体燃爆危害随SOC增加而增加,直至100% SOC时燃爆风险最大且危害性最高,然而随着电池过充电相关危害性却有不同程度下降。本文为锂离子电池排放气体燃烧机理分析提供了可行的方法,揭示了SOC对电池排放气体燃爆危害性的影响,对锂离子电池储存与运输安全、储能电站安全防护及相关灭火剂的选择提供了参考。

关键词: 燃爆特性, 爆炸极限, 层流火焰速度, 绝热火焰温度, 敏感性分析

Abstract:

The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries. Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles, thereby promoting the application and development of lithium-ion batteries. Based on this understanding and combined with previous research on gas production from lithium-ion batteries, this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge (SOCs). The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the "elimination" method, and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas. And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas. The study found that the 100% SOC battery has the lowest explosion limit of the vent gas. The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher. Therefore, it has the maximum laminar flame speed and adiabatic flame temperature. The combustion and explosion hazard of battery vent gas increases with the increase of SOC, and the risk of explosion is the greatest and most harmful when SOC reaches 100%. However, the related hazards decrease to varying degrees with overcharging of the battery. This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries, revealing the impact of SOC on the hazardousness of battery vent gas. It provides references for the safety of storage and transportation of lithium-ion batteries, safety protection of energy storage stations, and the selection of related fire extinguishing agents.

Key words: Combustion and explosion characteristics, Explosion limit, Laminar flame speed, Adiabatic flame temperature, Sensitivity analysis