[1] |
Song L B, Zheng Y H, Xiao Z L, Wang C, Long T Y. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. J. Electron. Mater., 2021, 51(1): 30-46.
|
[2] |
Feng X N, Lu L G, Ouyang M G, Li J Q, He X M. A 3d thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208.
|
[3] |
Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Mater., 2018, 10: 246-267.
|
[4] |
Duan J, Tang X, Dai H F, Yang Y, Wu W Y, Wei X Z, Huang Y H. Building safe lithium-ion batteries for electric vehicles: A review[J]. Electrochem. Energy Rev., 2019, 3(1): 1-42.
|
[5] |
International Energy Agency: Global EV Data Explorer[DB/OL]. https://www.iea.org/data-and-statistics
|
[6] |
Zhang H, Wang L, He X M. Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNiXMnYCo1-x-yO2 cathode materials[J]. Battery Energy, 2021, 1(1): 20210011.
|
[7] |
Liu Y, Mao Y, Wang H C, Pan Y J, Liu B H. Internal short circuit of lithium metal batteries under mechanical abuse[J]. Int. J. Mech. Sci., 2023, 245: 108130.
|
[8] |
Golubkov A W, Planteu R, Krohn P, Rasch B, Brunnsteiner B, Thaler A, Hacker V. Thermal runaway of large automotive li-ion batteries[J]. RSC Adv., 2018, 8(70): 40172-40186.
|
[9] |
Liu B H, Jia Y K, Yuan C H, Wang L B, Gao X, Yin S, Xu J. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review[J]. Energy Storage Mater., 2020, 24: 85-112.
|
[10] |
Szabo I, Sirca A A, Scurtu L, Kocsis L, Hanches I N, Mariaşiu F. Comparative study of Li-ion 21700 cylindrical cell under mechanical deformation[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2022, 1256(1): 012023.
|
[11] |
Zeyu C, Rui X, Sun F C. Research status and analysis for battery safety accidents in electric vehicles[J]. J. Mech. Eng., 2019, 55(24): 93-104.
doi: 10.3901/JME.2019.24.093
|
[12] |
Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K, Ouyang M. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85: 105878.
|
[13] |
Peng Y, Yang L Z, Ju X Y, Liao B S, Ye K, Li L, Cao B, Ni Y. A Comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. J. Hazard. Mater., 2020, 381: 120916.
|
[14] |
Koch S, Fill A, Birke K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. J. Power sources, 2018, 398: 106-112.
|
[15] |
Zhang Q S, Niu J H, Yang J, Liu T T, Bao F W, Wang Q. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway[J]. J. Energy Storage, 2022, 56: 106146.
|
[16] |
Baird A R, Archibald E J, Marr K C, Ezekoye O A. Explosion hazards from lithium-ion battery vent gas[J]. J. Power sources, 2020, 446: 227257.
|
[17] |
Hu E J, Huang Z H, Jiang X, Li Q Q, Zhang X Y. Kinetic study on laminar burning velocities and ignition delay times of C1-C4 alkanes[J]. J. Eng. Thermophys-RUS, 2013, 34(3): 558-562
|
[18] |
Ma B, Liu J, Yu R G. Study on the flammability limits of lithium-ion battery vent gas under different initial conditions[J]. ACS Omega, 2020, 5(43): 28096-28107.
doi: 10.1021/acsomega.0c03713
pmid: 33163792
|
[19] |
Fan R J, Wang Z R, Lu Y W, Lin C D, Guo W J. Numerical analysis on the combustion characteristic of lithium-ion battery vent gases and the suppression effect[J]. Fuel, 2022, 330: 125450.
|
[20] |
Golubkov A W, Scheikl S, Planteu R, Voitic G, Wiltsche H, Stangl C, Fauler G, Thaler A, Hacker V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - Impact of state of charge and overcharge[J]. RSC Adv., 2015, 5(70): 57171-57186.
|
[21] |
Wang H, You A V, Joshi S G, et al. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds[DB/OL]. 2018-06-20, http://ignis.usc.edu/USC_Mech_Il.htm
|
[22] |
Akram M, Saxena P, Kumar S. Laminar burning velocity of methane-air mixtures at elevated temperatures[J]. Energy Fuels, 2013, 27(6): 3460-3466.
|
[23] |
Liu Z, Kim N I. An assembled annular stepwise diverging tube for the measurement of laminar burning velocity and quenching distance[J]. Combust. Flame, 2014, 161(6): 1499-1506.
|
[24] |
Pagliaro J L, Linteris G T, Sunderland P B, Baker P T. Combustion inhibition and enhancement of premixed methane-air flames by halon replacements[J]. Combust. Flame, 2015, 162(1): 41-49.
|
[25] |
Shang R X, Zhang Y, Zhu M M, Zhang Z Z, Zhang D K, Li G. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames[J]. Int. J. Hydrog. Energy, 2016, 41(33): 15056-15067.
|
[26] |
Guo C C, Zhang Q S. Determination on explosion limit of pyrolysis gas released by lithium-ion battery and its risk analysis[J]. JSSE, 2016, 12(9): 46-49
|
[27] |
Chen Y. Industrial fire and explosion accident prevention[M]. Beijing: Chemical Industry Press, 2010.
|
[28] |
Wang H B, Xu H, Zhang Z L, Wang Q Z, Jin C Y, Wu C J, Xu C S, Hao J Y, Sun L, Du Z M, Li Y, Sun J L, Feng X N. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190.
|