电化学(中英文) ›› 2024, Vol. 30 ›› Issue (8): 2314004. doi: 10.61558/2993-074X.3466
所属专题: “下一代二次电池”专题文章
• 综述 • 上一篇
王昱喆a, 蒋卓良a, 温波a, 黄耀辉a, 李福军a,b,*()
收稿日期:
2023-12-24
修回日期:
2024-04-22
接受日期:
2024-04-26
出版日期:
2024-08-28
发布日期:
2024-04-29
通讯作者:
李福军
E-mail:fujunli@nankai.edu.cn
Yu-Zhe Wanga, Zhuo-Liang Jianga, Bo Wena, Yao-Hui Huanga, Fu-Jun Lia,b,*()
Received:
2023-12-24
Revised:
2024-04-22
Accepted:
2024-04-26
Published:
2024-08-28
Online:
2024-04-29
Contact:
Fu-Jun Li
E-mail:fujunli@nankai.edu.cn
About author:
First author contact:Invited Contribution from Award Winners of the 21st National Electrochemical Congress in 2023
摘要:
可充电锂氧(Li-O2)电池因其高能量密度而受到广泛关注。然而,缓慢的阴极动力学导致较高过电压和较差的循环性能。为了克服这一问题,不同种类的阴极催化剂已经开始被探索。其中,钌基电催化剂已被证明是促进析氧反应(OER)的极具前景的阴极催化剂。由于钌基催化剂与超氧根阴离子(O2-)中间体之间存在强相互作用,因此可以通过调节Li2O2的形态来促进过氧化锂(Li2O2)的分解。本文介绍了钌基电催化剂的设计策略,以提高其在锂氧电池中的OER催化动力学。不同结构的钌基催化剂已经被总结,包括金属颗粒(钌金属和合金)、单原子催化剂和不同底物(碳材料、金属氧化物/硫化物)负载钌的化合物,以调节钌基电催化剂的电子结构和基体结构。这些钌基电催化剂调节了对LiO2的吸附,提高了OER活性,抑制了副产物的形成,从而提升了Li-O2电池的可逆性和循环稳定性。然而,Li-O2电池仍然面临着许多挑战。其中之一是锂金属阳极的问题,锂的不稳定性和安全性一直是Li-O2电池研究的一个关键问题。此外,电解质的选择和阴极材料的优化也是当前研究的重点之一。为了提高Li-O2电池的性能,还需要对添加剂(即氧化还原介质)进行更深入的研究,以提高电池的循环寿命和能量密度。这些挑战的克服将需要跨学科的合作和持续的研究努力,以推动Li-O2电池的进一步发展。
王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004.
Yu-Zhe Wang, Zhuo-Liang Jiang, Bo Wen, Yao-Hui Huang, Fu-Jun Li. Recent Advances on Ruthenium-Based Electrocatalysts for Lithium-Oxygen Batteries[J]. Journal of Electrochemistry, 2024, 30(8): 2314004.
[1] |
Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chem. Rev., 2020, 120(14): 6558-6625.
doi: 10.1021/acs.chemrev.9b00545 pmid: 32090540 |
[2] | Du D F, Zhu Z, Chan K Y, Li F J, Chen J. Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries[J]. Chem. Soc. Rev., 2022, 51: 1846. |
[3] | Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. Lithium-air battery: Promise and challenges[J]. J. Phys. Chem. Lett., 2010, 1(14): 2193-2203. |
[4] | Lu Y C, Gallant B M, Kwabi D G, Harding J R, Mitchell R R, Whittingham M S, Shao-Horn Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance[J]. Energy Environ. Sci., 2013, 6(3): 750-768. |
[5] | Jiang Z L, Wen B, Huang Y H, Guo Y H, Wang Y Z, Li F J. New reaction pathway of superoxide disproportionation induced by a soluble catalyst in Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2024, 63(1): e202315314. |
[6] |
Wandt J, Jakes P, Granwehr J, Gasteiger H A, Eichel R A. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery[J]. Angew. Chem. Int. Ed., 2016, 55(24): 6892-6895.
doi: 10.1002/anie.201602142 pmid: 27145532 |
[7] | Jiang Z L, Xu G L, Yu Z, Zhou T H, Shi W K, Luo C S, Zhou H J, Chen L B, Sheng W J, Zhou M X, Cheng L, Assary R S, Sun S G, Sun H. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower[J]. Nano Energy, 2019, 64: 103896. |
[8] | Wen B, Zhu Z, Li F J. Advances and challenges on cathode catalysts for lithium oxygen batteries[J]. J. Electrochem., 2023, 29(2): 7-19. |
[9] |
Zahoor A, Ghouri Z K, Hasmi S, Raza F, Ishtiaque S, Nadeem S, Ullah I, Nahm K S. Electrocatalysts for lithium-air batteries: Current status and challenges[J]. ACS Sustain. Chem. Eng., 2019, 7(17):14288-14320.
doi: 10.1021/acssuschemeng.8b06351 |
[10] | Zhao T, Yao Y, Yuan Y F, Wang M L, Wu F, Amine K, Lu J. A universal method to fabricating porous carbon for Li-O2 battery[J]. Nano Energy, 2021, 82: 105782. |
[11] |
Zhao B, Ye Z M, Kong X B, Han L, Xia Z Y, Chen K, Wang Q, Li M, Shang Y Y, Cao A Y. Orthogonal-channel, low-tortuosity carbon nanotube platforms for high-performance Li-O2 batteries[J]. ACS Nano, 2023, 17(18): 18382-18391.
doi: 10.1021/acsnano.3c05782 pmid: 37671672 |
[12] |
Tu Y C, Deng D H, Bao X H. Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries[J]. J. Energy Chem., 2016, 25(6): 957-966.
doi: 10.1016/j.jechem.2016.10.012 |
[13] |
Zhou Y, Yin K, Gu Q F, Tao L, Li Y J, Tan H, Zhou J H, Zhang W S, Li H B, Guo S J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60 (51): 26592-26598.
doi: 10.1002/anie.202114067 pmid: 34719865 |
[14] | Barile C J, Gewirth A A. Investigating the Li-O2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. J. Electrochem. Soc., 2013, 160(4): A549. |
[15] | Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J]. ACS Nano, 2013, 7(4): 3532-3539. |
[16] | Yang Y, Liu W, Wu N A, Wang X C, Zhang T, Chen L F, Zeng R, Wang Y M, Lu J T, Fu L, Li X, Zhuang L. Tuning the morphology of Li2O2 by noble and 3d metals: A planar model electrode study for Li-O2 battery[J]. ACS Appl. Mater. Interfaces, 2017, 9(23): 19800-19806. |
[17] | Bae Y, Park H, Ko Y, Kim H, Park S K, Kang K. Bifunctional oxygen electrocatalysts for lithium-oxygen batteries[J]. Batteries Supercaps, 2019, 2(4): 311-325. |
[18] |
Zhang M, Zou L, Yang C Z, Chen Y, Shen Z R, Chi B. An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li-O2 batteries[J]. Nanoscale, 2019, 11(6): 2855-2862.
doi: 10.1039/c8nr08921c pmid: 30681684 |
[19] | Vankova S, Francia C, Amici J, Zeng J, Bodoardo S, Penazzi N, Collins G, Geaney H, O'Dwyer C. Influence of binders and solvents on stability of Ru/RuOx nanoparticles on ITO nanocrystals as Li-O2 battery cathodes[J]. ChemSusChem, 2017, 10(3): 575-586. |
[20] | Jung C Y, Zhao T S, Zeng L, Tan P. Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries[J]. J. Power Sources, 2016, 331: 82-90. |
[21] | Kwak K H, Kim D W, Kang Y, Suk J. Hierarchical Ru-and RuO2-foams as high performance electrocatalysts for rechargeable lithium-oxygen batteries[J]. J. Mater. Chem. A, 2016, 4(42): 16356-16367. |
[22] | Yang J B, Mi H W, Luo S, Li Y L, Zhang P X, Deng L B, Sun L N, Ren X Z. Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: A combined DFT and experimental study[J]. J. Power Sources, 2017, 368: 88-96. |
[23] | Li F J, Chen Y, Tang D M, Jian Z L, Liu C, Golberg D, Yamada A, Zhou H S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode[J]. Energy Environ. Sci., 2014, 7(5): 1648-1652. |
[24] | Wu D F, Guo Z Y, Yin X B, Pang Q Q, Tu B B, Zhang L J, Wang Y G, Li Q W. Metal-organic frameworks as cathode materials for Li-O2 batteries[J]. Adv. Mater., 2014, 26(20): 3258-3262. |
[25] | Su D W, Dou S X, Wang G X. Hierarchical Ru nanospheres as highly effective cathode catalysts for Li-O2 batteries[J]. J. Mater. Chem. A, 2015, 3(36): 18384-18388. |
[26] | Ma S C, Wu Y, Wang J W, Zhang Y L, Zhang Y T, Yan X X, Wei Y, Liu P, Wang J P, Jiang K L, Fan S S, Xu Y, Peng Z Q. Reversibility of noble metal-catalyzed aprotic Li-O2 batteries[J]. Nano Lett., 2015, 15(12): 8084-8090. |
[27] | Kim J G, Kim Y, Noh Y, Lee S, Kim Y, Kim W B. Bifunctional hybrid catalysts with perovskite LaCo0.8Fe0.2O3 nanowires and reduced graphene oxide sheets for an efficient Li-O2 battery cathode[J]. ACS Appl. Mater. Interfaces, 2018, 10(6): 5429-5439. |
[28] |
Lin Y, Moitoso B, Martinez-Martinez C, Walsh E D, Lacey S D, Kim J W, Dai L, Hu L, Connell J W. Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes[J]. Nano Lett., 2017, 17(5): 3252-3260.
doi: 10.1021/acs.nanolett.7b00872 pmid: 28362096 |
[29] | Zhong X, Papandrea B, Xu Y X, Lin Z Y, Zhang H, Liu Y, Huang Y, Duan X F. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions[J]. Nano Res., 2017, 10: 472-482. |
[30] | Sun B, Munroe P, Wang G X. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Sci. Rep., 2013, 3(1): 2247. |
[31] | Sun B, Chen S Q, Liu H, Wang G X. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries[J]. Adv. Funct. Mater., 2015, 25(28): 4436-4444. |
[32] | Song H Y, Xu S M, Li Y J, Dai J Q, Gong A, Zhu M W, Zhu C L, Chen C J, Chen Y A, Yao Y G, Liu B Y, Song J W, Pastel G, Hu L B. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries[J]. Adv. Energy Mater., 2018, 8(4): 1701203. |
[33] | Liu M R, Sun K L, Zhang Q H, Tang T, Huang L L, Li X H, Zeng X, Y Hu J S, Liao S J. Rationally designed three-dimensional N-doped graphene architecture mounted with Ru nanoclusters as a high-performance air cathode for lithium-oxygen batteries[J]. ACS Sustain. Chem. Eng., 8(15): 6109-6117. |
[34] | Dai W R, Liu Y, Wang M, Lin M, Lian X, Luo Y N, Yang J L, Chen W. Monodispersed ruthenium nanoparticles on nitrogen-doped reduced graphene oxide for an efficient lithium-oxygen battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 19915-19926. |
[35] | Sun Z, Yang C S, Jiang F L, Zhang T. Chimerism of carbon by ruthenium induces gradient catalysis[J]. Adv. Funct. Mater., 2021, 31(34): 2104011. |
[36] | Cao D Q, Zhang S S, Yu F J, Wu Y P, Chen Y H. Carbon-free cathode materials for Li-O2 batteries[J]. Batteries Supercaps, 2019, 2(5): 428-439. |
[37] | Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S. Ru/ITO: A carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano lett., 2013, 13(10): 4702-4707. |
[38] |
Li F J, Tang D M, Jian Z L, Liu D Q, Golberg D, Yamada A, Zhou H S. Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles[J]. Adv. Mater., 2014, 26(27): 4659-4664.
doi: 10.1002/adma.201400162 |
[39] | Xu Y F, Chen Y, Xu G L, Zhang R X, Chen Z, Li J T, Huang L, Amine K, Sun S G. RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery[J]. Nano Energy, 2016, 28: 63-70. |
[40] | Wu X B, Zhang Y F, Chen S Y, Zhan X Y, Zhang H, Zhang L, Su L W, Shen C Q, Chen H, Wu H, Wang L B. Low-carbon CeOx/Ru@RuO2 nanosheets as bifunctional catalysts for lithium-oxygen batteries[J]. J. Alloys Compd., 2022, 924: 166354. |
[41] | Zhang S Q, Wang Y, Li D, Kang Z Y, Dong F L, Xie H M, Liu J. Ru-impregnated needle-like NiCo2O4 embedded in carbon textiles as O2 electrode for a flexible Li-O2 battery[J]. J. Alloys Compd., 2020, 825: 154054. |
[42] | Zou L, Jiang Y X, Cheng J F, Chen Y, Chi B, Pu J, Jian L. Bifunctional catalyst of well-dispersed RuO2 on NiCo2O4 nanosheets as enhanced cathode for lithium-oxygen batteries[J]. Electrochim. Acta, 2018, 262: 97-106. |
[43] |
Yoon K R, Kim D S, Ryu W H, Ryu W H, Song S H, Youn D Y, Jung J W, Jeon S, Park Y J, Kim I D. Tailored combination of low dimensional catalysts for efficient oxygen reduction and evolution in Li-O2 batteries[J]. ChemSusChem, 2016, 9(16): 2080-2088.
doi: 10.1002/cssc.201600341 pmid: 27453065 |
[44] |
Yoon K R, Lee G Y, Jung J W, Kim N H, Kim S O, Kim I D. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries[J]. Nano Lett., 2016, 16(3): 2076-2083.
doi: 10.1021/acs.nanolett.6b00185 pmid: 26821307 |
[45] | Lian Z, Lu Y C, Zhao S Z, Li Z J, Liu Q C. Engineering the electronic interaction between atomically dispersed Fe and RuO2 attaining high catalytic activity and durability catalyst for Li-O2 battery[J]. Adv. Sci., 2023, 10(9): 2205975. |
[46] | Kulkarni P, Nataraj S K, Balakrishna R G, Nagarajua D H, Reddy M V. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices[J]. J. Mater. Chem. A, 2017, 5(42): 22040-22094. |
[47] |
Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chem. Soc. Rev., 2019, 48(15): 4178-4280.
doi: 10.1039/c8cs00664d pmid: 31206105 |
[48] | Fu G T, Wang J, Chen Y F, Liu Y, Tang Y W, Goodenough J B, Lee J M. Exploring indium-based ternary thiospinel as conceivable high-potential air-cathode for rechargeable Zn-Air batteries[J]. Adv. Energy Mater., 2018, 8(31): 1802263. |
[49] | Zheng R X, Shu C Z, Liu C H, Yan Y, He M, Li M L, Hu A J, Long J P. Tuning the unsaturated coordination center of electrocatalysts toward high-performance lithium-oxygen batteries[J]. ACS Sustain. Chem. Eng., 2021, 9(22): 7499-7507. |
[50] | Liang R X, Shu C Z, Hu A J, Xu C X, Zheng R X, Li M L, Guo Y W, He M, Yan Y, Long J P. Tuning the electronic band structure of mott-schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium-oxygen batteries[J]. J. Mater. Chem. A, 2020, 8(22): 11337-11345. |
[51] | Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications[J]. Chem. Rev., 2018, 119(3): 1806-1854. |
[52] | Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849. |
[53] | Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2batteries[J]. J. Am. Chem. Soc., 2020, 142(39): 16776-16786. |
[54] | Dhiman M, Polshettiwar V. Supported single atom and pseudo-single atom of metals as sustainable heterogeneous nanocatalysts[J]. ChemCatChem, 2018, 10(5): 881-906. |
[55] | Alaf M, Tocoglu U, Kartal M, Akbulut H. Graphene supported heterogeneous catalysts for Li-O2 batteries[J]. Appl. Surf. Sci., 2016, 380: 185-192. |
[56] | Ren S, Yu Q, Yu X H, Rong P, Jiang L Y, Jiang J C. Graphene-supported metal single-atom catalysts: A concise review[J]. Sci. China Mater., 2020, 63(6): 903-920. |
[57] | Liu W Y, Su Q M, Yu L T, Du G H, Li C X, Zhang M, Ding S K, Xu B S. Understanding reaction mechanism of oxygen evolution reaction using Ru single atoms as catalyst for Li-O2 battery[J]. J. Alloys Compd., 2021, 886: 161189. |
[58] |
He J, Zha M Q, Cui J S, Zeller M, Hunter A D, Yiu S M, Lee S T, Xu Z. T Convenient detection of Pd(II) by a metal-organic framework with sulfur and olefin functions[J]. J. Am. Chem. Soc., 2013, 135(21): 7807-7810.
doi: 10.1021/ja401479j pmid: 23647026 |
[59] | Xiao L Y, Wang Z L, Guan J Q. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges[J]. Coord. Chem. Rev., 2022, 472: 214777. |
[60] | Meng Z H, Chen N, Cai S C, Wang R, Wu J W, Tang H L. Recent advances of hierarchically porous bifunctional oxygen electrocatalysts derived from metal-organic frameworks for Zn-Air batteries[J]. Mater. Chem. Front., 2021, 5(6): 2649-2667. |
[61] | Jiang Z L, Wen B, Huang Y H, Li H X, Li F J. Metal-organic framework-based lithium-oxygen batteries[J]. Chem. Eur. J., 2022, 28(64): e202202130. |
[62] | Lv Q L, Zhu Z, Ni Y X, Geng J R, Li F J. Spin-state manipulation of two‐dimensional metal-organic framework with enhanced metal-oxygen covalency for lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202114293. |
[63] |
Lv Q L, Zhu Z, Ni Y X, Wen B, Jiang Z L, Fang H Y, Li F J. Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium-oxygen batteries[J]. J. Am. Chem. Soc., 2022, 144(50): 23239-23246.
doi: 10.1021/jacs.2c11676 pmid: 36474358 |
[64] | Zhang M D, Dai Q B, Zheng H G, Chen M D, Dai L M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J]. Adv. Mater., 2018, 30(10): 1705431. |
[65] | Li Z Q, Yang J Y, Ge X L, Deng Y P, Jiang G P, Li H B, Sun G R, Liu W W, Zheng Y, Dou H Z, Jiao H L, Zhu J B, Li N, Hu Y F, Feng M, Chen Z W. Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries[J]. Nano Energy, 2021, 89: 106314. |
[66] | Yao L X, Lin J, Li S, Wu Y H, Ding H R, Zheng H F, Xu W J, Xie T, Yue G H, Peng D L. Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeNx moieties and ruthenium nanoparticles as cathode electrocatalyst for lithium-oxygen batteries[J]. J. Colloid Interface Sci., 2021, 596: 1-11. |
[67] | Tong Z, Lv C, Zhou Y, Zhang P F, Xiang C C, Li Z G, Wang Z, Liu Z K, Li, J T, Sun S G. Highly dispersed Ru-Co nanoparticles interfaced with nitrogen-doped carbon polyhedron for high efficiency reversible Li-O2 battery[J]. Small, 2022, 18(48): 2204836. |
[68] | Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 133(6): 3242-3248. |
[69] | Yu Y, Yin Y B, Ma J L, Chang Z W, Sun T, Zhu Y H, Yang X Y, Liu T, Zhang X B. Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries[J]. Energy Storage Mater., 2019, 18: 382-388. |
[70] | Huang Y H, Geng J R, Jiang Z L, Ren M, Wen B, Chen J, Li F J. Solvation structure with enhanced anionic coordination for stable anodes in lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2023, 62(30): e202306236. |
[71] | Huang Y H, Wen B, Jiang Z L, Li F J. Solvation chemistry of electrolytes for stable anodes of lithium metal batteries[J]. Nano Res., 2023, 16(6): 8072-8081. |
[72] | Luntz A C, McCloskey B D. Li-air batteries: Importance of singlet oxygen[J]. Nat. Energy, 2017, 2(5): 1-2. |
[73] | Jiang Z L, Huang Y H, Zhu Z, Gao S N, Lv Q L, Li F J. Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery[J]. Proc. Natl. Acad. Sci. USA, 2022, 119(34): e2202835119. |
[1] | 韩联欢, 郭佳瑶, 崔苗苗. 电极过程动力学反应速率常数测量的若干方法[J]. 电化学(中英文), 2024, 30(2): 2303241-. |
[2] | 温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001-. |
[3] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[4] | MatthewMSartin, 陈微, 贺凡, 陈艳霞. 铜电极上二氧化碳还原机理的研究进展[J]. 电化学(中英文), 2020, 26(1): 41-53. |
[5] | 杨 帆, 邓培林, 韩优嘉, 潘 静, 夏宝玉. 电化学二氧化碳还原中的铜基催化剂[J]. 电化学(中英文), 2019, 25(4): 426-444. |
[6] | 王祖华,钮东方,李辉成,杜荣斌,徐衡,张新胜. Sn掺杂对氧空位型α-Fe2O3纳米颗粒光解水性能的影响[J]. 电化学(中英文), 2017, 23(1): 21-27. |
[7] | 张三佩, 温兆银, 靳 俊, 吴相伟, 胡英瑛, 吴梅芬. 二次钠-空气电池的研究进展[J]. 电化学(中英文), 2015, 21(5): 425-432. |
[8] | 李照华, 褚有群, 马淳安. Ce3+/Ce4+电对在硫酸和甲磺酸介质中电化学性能的差异[J]. 电化学(中英文), 2013, 19(2): 141-145. |
[9] | 汤儆, 杜琳, 肖孝建, 张宁. Fe(CN)63-/4-和细胞色素c电化学反应温度影响比较[J]. 电化学(中英文), 2012, 18(1): 43-50. |
[10] | 季巍巍, 徐立群, 李冬梅, 王荣, 吴霞琴, 章宗穰, . CH_2Cl_2对离子液体BmimPF_6中二茂铁电化学行为的影响[J]. 电化学(中英文), 2008, 14(4): 411-414. |
[11] | 刘欣,李宇展,胡瑞省,顾登平. 草酸电还原反应机理的研究[J]. 电化学(中英文), 2004, 10(1): 41-45. |
[12] | 曹余良,杨汉西,艾新平,肖利芬. MnO_2电极上氧还原的电催化机理[J]. 电化学(中英文), 2003, 9(3): 336-343. |
[13] | 林原, 蔡润良, 吴浩青. Li/α-Sn(HPO_4)_2电池及其反应机理[J]. 电化学(中英文), 1997, 3(4): 378-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||