电化学(中英文) ›› 2017, Vol. 23 ›› Issue (3): 262-275. doi: 10.13208/j.electrochem.161052
• 有机电化学及电化学工业近期研究专辑(华东理工大学张新胜教授、北京化工大学曾程初教授主编) • 上一篇 下一篇
钱 朋,毕美香,王玉康,查正根*,汪志勇*
收稿日期:
2016-11-16
修回日期:
2017-02-13
出版日期:
2017-06-29
发布日期:
2017-02-15
通讯作者:
查正根,汪志勇
E-mail:zwang3@ustc.edu.cn; zgzha@ustc.edu.cn
基金资助:
国家自然科学基金项目(21272222, 21172205, 21432009, 21472177, 21672200)资助
QIAN Peng, BI Mei-xiang, WANG Yu-kang, ZHA Zheng-gen*, WANG Zhi-yong*
Received:
2016-11-16
Revised:
2017-02-13
Published:
2017-06-29
Online:
2017-02-15
Contact:
ZHA Zheng-gen, WANG Zhi-yong
E-mail:zwang3@ustc.edu.cn; zgzha@ustc.edu.cn
摘要:
近年来,有机电化学合成已经成为有机合成化学中构造碳碳及碳杂键的重要方法. 该文主要综述了目前电化学合成的主要研究方向,着重介绍了我们课题组在电化学合成中利用碘自由基,促进苯乙酮α-C—H键的官能团化所取得的研究进展. 该方面的研究为绿色有机合成的发展提供了新的思路和方向.
中图分类号:
钱 朋,毕美香,王玉康,查正根,汪志勇. 电化学条件下α-C—H键的官能团化的研究进展[J]. 电化学(中英文), 2017, 23(3): 262-275.
QIAN Peng, BI Mei-xiang, WANG Yu-kang, ZHA Zheng-gen, WANG Zhi-yong. Research Progresses of α-C—H Bond Functionalizations under Electrochemical Conditions[J]. Journal of Electrochemistry, 2017, 23(3): 262-275.
[1]马淳安, 有机电化学合成导论[M], 2003, 3-5. [2] Grimshaw J, Electrochemical reactions and mechanisms in organic chemistry[M]. Elsevier, Amsterdam 2000. [3] Xu H-C, Moeller, K D. Intramolecular anodic olefin coupling reactions: the use of a nitrogen trapping group [J]. Journal of the American Chemical Society, 2008, 130(41): 13542-13543. [4] Hou Z-W, Mao Z-Y, Zhao H-B, et al. Electrochemical C?H/N?H functionalization for the synthesis of highly functionalized (Aza)indoles[J]. Angewandte Chemie International Edition, 2016, 55(1): 1-6. [5] Xiong P, Xu F, Qian X-Y, et al. Copper-catalyzed intramolecular oxidative amination of unactivated internal alkenes [J]. Chemistry - A European Journal, 2016, 22(13): 4379-4383. [6] Li S-Q, Xiong P, Zhu L, et al. A general CuCl2-Promoted alkene aminochlorination reaction[J].European Journal of Organic Chemistry, 2016, 20: 3449-3455. [7] Zhao H-B, Hou Z-W, Liu Z-J, et al. Amidinyl radical formation through anodic N?H bond cleavage and its application in aromatic C?H bond functionalization[J]. Angewandte Chemie International Edition, 2017, 56(2): 587-590. [8] Kirste A, Schnakenburg G, Stecker F, et al. Anodic phenol–arene cross-coupling reaction on boron-doped diamond electrodes[J]. Angewandte Chemie International Edition, 2010, 49(5): 971-975. [9] Mu?ller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886. [10] Tajima T, Nakajima A, FuchigamiT, Electrolytic partial fluorination of organic compounds. 83. anodic fluorination of N-substituted pyrroles and its synthetic applications to gem-difluorinated heterocyclic compounds[J]. The Journal of Organic Chemistry, 2006, 71(4): 1436-1441. [11] Sawamura T, Takahashi K, Inagi S, et al. Electrochemical fluorination using alkali-metal fluorides[J]. Angewandte Chemie International Edition, 2012, 51(18): 4413-4416. [12] Yoshida J-I, Sugawara M, Kise N, Organothio groups as electroauxiliaries-electrooxidative intermolecular and intramolecular carbon-carbon bond formation[J]. Tetrahedron Letters, 1996, 37(18): 3157-3160. [13] Morofuji. T, Shimizu A, Yoshida J-I, Direct C?N coupling of imidazoles with aromatic and benzylic compounds via electrooxidative C?H functionalization[J]. Journal of the American Chemical Society, 2014, 136(12): 4496-4499. [14] Morofuji T, Shimizu A, Yoshida J-I, Heterocyclization approach for electrooxidative coupling of functional primary alkylamines with aromatics[J]. Journal of the American Chemical Society, 2015, 137(31): 9816-9819. [15] Costentin C, Drouet S, Robert M, et al. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst[J]. Science, 2012, 338(6103): 90-94. [16] Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059. [17] Zhao S-F, Zhu M-X, Zhang K, et al. Alkaloid induced asymmetric electrocarboxylation of 4-methylpropiophenone[J]. Tetrahedron Letters, 2011, 52(21): 2702-2705. [18] Yang H-P, Yue Y-N, Sun, Q-L, et al. Entrapment of a chiral cobalt complex within silver: a novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2[J]. Chemical Communications, 2015, 51(61): 12216-12219. [19] Li C-J, Organic reactions in aqueous media with a focus on carbon?carbon bond formations:? A decade update[J]. Chemical Reviews, 2005, 105(8): 3095-3166. [20] Hilt G, Smolko K, Electrochemical regeneration of low-valent indium(I) species as catalysts for C?C bond formations[J]. Angewandte Chemie International Edition, 2001, 40(18): 3399-3402. [21] Zha Z G, Hui A L, Zhou Y Q, et al. A recyclable electrochemical allylation in water[J]. Organic Letters, 2005, 7(10): 1903-1905. [22] Huang J-M, Wang X-X, Dong Y, Electrochemical allylation reactions of simple imines in aqueous solution mediated by nanoscale zinc architectures[J]. Angewandte Chemie International Edition, 2011, 50(4): 924-927. [23] Zeng C-C, Zhang N-T, Lam C M, et al. Novel triarylimidazole redox catalysts: synthesis, electrochemical properties, and applicability to electrooxidative C–H activation[J], Organic Letters, 2012, 14(5): 1314-1317. [24] Chen J, Yan W-Q, Lam M, et al. Electrocatalytic aziridination of alkenes mediated by n-Bu4NI: a radical pathway[J]. Organic Letters, 2015, 17(4): 986-989. [25] Liang S, Zeng C-C, Luo X-G, et al. Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu4NI induced C–N followed by a C–O bond formation cascade for the synthesis of indulines[J].Green Chemistry, 2016, 18(7): 2222-2230. [26] Kang L-S, Luo M-H, Lam C-M, et al. Electrochemical C–H functionalization and subsequent C–S and C–N bond formation: paired electrosynthesis of 3-amino-2-thiocyanato-α,β-unsaturated carbonyl derivatives mediated by bromide ions[J].Green Chemistry, 2016, 18(13): 3767-3774. [27] Jiang Y-Y, Liang S, Zeng C-C, et al. Electrochemically initiated formation of sulfonyl radicals: synthesis of oxindoles via difunctionalization of acrylamides mediated by bromide ion[J].Green Chemistry, 2016, 18(23): 6311-6319. [28] Zhang L, Zha Z G, Wang Z Y, Aqueous electrosynthesis of carbonyl compounds and the corresponding homoallylic alcohols in a divided cell[J]. Tetrahedron Letters, 2010, 51(10): 1426-1429. [29] Zhang L, Zha Z G, Zhang Z L, et al. An electrochemical tandem reaction: one-pot synthesis of homoallylic alcohols from alcohols in aqueous media[J]. Chemical Communications, 2010, 46(38): 7196-7198. [30] Zhang L, Chen H, Zha Z G, et al. Electrochemical tandem synthesis of oximes from alcohols using KNO3 as the nitrogen source, mediated by tin microspheres in aqueous medium[J]. Chemical Communications, 2012, 48(52): 6574-6576. [31] Wan C F, Gao L F, Wang Q, et al. Simple and efficient preparation of 2,5-disubstituted oxazoles via a metal-free-catalyzed cascade cyclization[J]. Organic Letters, 2010, 12(17): 3902-3905. [32] Zhang Z L, Su J H, Zha Z G, et al. A novel approach for the one-pot preparation of α-ketoamides by anodic oxidation[J]. Chemical Communications, 2013, 49(79): 8982-8984. [33] Zhang Z L, Su J H, Zha Z G, et al. Electrochemical synthesis of the aryl [alpha]-ketoesters from acetophenones mediated by KI[J]. Chemistry - A European Journal, 2013, 19(52): 17711-17714. [34] Gao H H, Zha Z G, Zhang Z L, et al. A simple and efficient approach to realize difunctionalization of arylketones with malonate esters via an electrochemical oxidation[J]. Chemical Communications, 2014, 50(39): 5034-5036. [35] Xu K, Zhang Z L, Qian P, et al. Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source[J]. Chemical Communications, 2015, 51(55): 11108-11111. [36] Li Y N, Gao H H, Zhang Z L, et al. Electrochemical synthesis of α-enaminones from aryl ketones[J]. Chemical Communications, 2016, 52(55): 8600-8603. [37] Tanaka H, Kuroda A, Marusawa H, et al. Structure of FK506, a novel immunosuppressant isolated from streptomyces[J]. Journal of the American Chemical Society, 1987, 109(16): 5031-5033. [38] Dubowchik G M, Vrudhula V M, Dasgupta B, et al. 2-Aryl-2,2-difluoroacetamide FKBP12 ligands:? synthesis and X-ray structural studies[J]. Organic Letters, 2001, 3(25): 3987-3990. [39] Liu J, Zhang R, Wang S F. et al. A general and efficient copper catalyst for the double carbonylation reaction[J]. Organic Letters, 2009, 11(6): 1321-1324. [40] Zhang C, Jiao N, Dioxygen activation under ambient conditions: Cu-catalyzed oxidative amidation?diketonization of terminal alkynes leading to α-ketoamides[J]. Journal of the American Chemical Society, 2009, 132(1): 28-29. [41] Zhang X, Wang L, TBHP/I2-promoted oxidative coupling of acetophenones with amines at room temperature under metal-free and solvent-free conditions for the synthesis of α-ketoamides[J]. Green Chemistry, 2012, 14(8): 2141-2145. [42] Wu W, Xu J, Huang S, et al. Co/Mn-mediated oxidative cross-coupling of indoles with β-keto esters via dioxygen activation: an efficient access to ketonization–olefination of indoles[J].Chemical Communications. 2011, 47(34): 9660-9662. [43] Suzuki S, Kitamura Y, Lectard S, et al. Catalytic asymmetric mono-fluorination of α-keto esters: synthesis of optically active β-fluoro-α-hydroxy and β-fluoro-α-amino acid derivatives[J]. Angewandte Chemie International Edition, 2012, 51(19), 4581-4585. [44] Nie Y, Xiao R, Xu Y, et al. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones[J]. Organic & Biomolecular Chemistry, 2011, 9(11): 4070-4078. [45] Photis J M, Halide-directed nitrile hydrolysis[J]. Tetrahedron Letters. 1980, 21(37): 3539-3540. [46] Urgoitia G, SanMartin R, Herrero M T, et al. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media[J]. Green Chemistry, 2011, 13(8): 2161-2166. [47] Thompson W J, Thompson D D, Anderson P S, et al. EP341961A2[P]. Eur. Pat. Appl, 1989, 30. [48] Guzman A, Romero M, Vilsmeier-Haack reaction with glutarimides. synthesis of 2,6-dichloro-1,4-dihydropyridine-3,5-dicarboxaldehydes[J]. The Journal of Organic Chemistry, 1990, 55(22): 5793-5797. [49] Mohammed A, Nagendrappa G, A remarkably simple-oximation of ketones to 1,2-dione monooximes using the chlorotrimethylsilane–isoamyl nitrite combination[J]. Tetrahedron Letters, 2003, 44(13): 2753-2755. [50] Zhuang J, Wang C Q, Xie F, et al. One-pot efficient synthesis of aryl-keto esters from aryl-ketones[J]. Tetrahedron, 2009, 65(47): 9797-9800. [51] Lamani M, Prabhu K R, NIS-catalyzed reactions: amidation of acetophenones and oxidative amination of propiophenones[J]. Chemistry - A European Journal, 2012, 18(46): 14638-14642. [52] Xu K, Fang Y, Yan Z C, et al. A highly tunable stereoselective dimerization of methyl ketone: efficient synthesis of E- and Z-1,4-enediones[J]. Organic Letters, 2013, 15(9): 2148-2151. [53]Zhu Y P, Liu M C, Jia F C, et al. Metal-free sp3 C?H bond dual-(Het)arylation: I2-promoted domino process to construct 2,2-bisindolyl-1-arylethanones[J]. Organic Letters, 2012, 14(13): 3392-3935. [54] Greenhill,J. V, Enaminones[J]. Chemical Society Reviews, 1977, 6(3): 277-294; [55] Liu J Y, Cao G E, Xu W, et al. Ni(OAc)2: a highly efficient catalyst for the synthesis of enaminone and enamino ester derivatives under solvent-free conditions[J]. Applied Organometallic Chemistry, 2010, 24(10): 685-691. [56] Saleh T S, Al-Omar M A, Abdel-Aziz H A, One-pot synthesis of enaminones using gold’s reagent[J]. Letters in Organic Chemistry, 2010, 7(6): 483-486. [57] Miura T, Funakoshi Y, Tanaka T, et al. Direct production of enaminones from terminal alkynes via rhodium-catalyzed reaction of formamides with N sulfonyl-1,2,3- triazoles[J]. Organic Letters, 2014, 16(10): 2760-2763. [58] Miura T, Funakoshi Y, Murakami M, et al. Synthesis of enaminones by rhodium-catalyzed denitrogenative rearrangement of 1 (N sulfonyl-1,2,3-triazol-4-yl)alkanols[J]. Journal of the American Chemical Society, 2012, 134(42): 17440-17443. [59] Ueno S, Shimizu R, Kuwano R, Nickel-catalyzed formation of a carbon–nitrogen bond at the β position of saturated ketones[J]. Angewandte Chemie International Edition, 2009, 48(25): 4543-4545. [60] Yu D,Sum Y N,Ean A C C, et al. Acetylide ion (C22-) as a synthon to link electrophiles and nucleophiles: a simple method for enaminone synthesis[J]. Angewandte Chemie International Edition, 2013, 52(19): 5125-5128. [61] Stanovnik B, Svete J, Synthesis of heterocycles from alkyl 3-(dimethylamino)propenoates and related enaminones[J]. Chemical Reviews, 2004, 104(5): 2433-2480. [62] Ghandi M, Jamea A H, Pyridine-mediated, one-pot, stereoselective synthesis of acyclic enaminones[J]. Tetrahedron Letters, 2011, 52(31): 4005-4007. [63] Yang Y, Ni F, Shu W-M, et al. Synthesis of tetrasubstituted unsymmetrical 1,4-enediones via copper-promoted autotandem catalysis and air as the oxidant[J]. The Journal of Organic Chemistry, 2013, 78(11): 5418-5426. [64] Akimova T I, Trofimenko N N, Verbitskii G A, et al. (Z)-1,4-diphenyl-2-phenylamino-2-butene-1,4-dione: synthesis and mechanizm of formation[J]. Russian Journal of Organic Chemistry, 2004, 40(5): 693-698. |
[1] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[2] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[3] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[4] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[5] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[6] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[7] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[8] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[9] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[10] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[11] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[12] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[13] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
[14] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[15] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||