电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104451. doi: 10.13208/j.electrochem.210445
所属专题: “电子电镀和腐蚀”专题文章
沈银飞, 陈艳丽*(), 王笙戌, 朱晔, 王文昌, 吴敏娴, 陈智栋*()
收稿日期:
2021-10-25
修回日期:
2021-11-26
出版日期:
2022-06-28
发布日期:
2021-11-26
通讯作者:
陈艳丽,陈智栋
E-mail:chenyl@cczu.edu.cn;zdchen@cczu.edu.cn
基金资助:
Yin-Fei Shen, Yan-Li Chen*(), Sheng-Xu Wang, Ye Zhu, Wen-Chang Wang, Min-Xian Wu, Zhi-Dong Chen*()
Received:
2021-10-25
Revised:
2021-11-26
Published:
2022-06-28
Online:
2021-11-26
Contact:
Yan-Li Chen, Zhi-Dong Chen
E-mail:chenyl@cczu.edu.cn;zdchen@cczu.edu.cn
摘要:
利用原位电化学表面增强拉曼光谱技术(EC-SERS)研究了酸性溶液中苯并三氮唑(BTAH)、 3-巯基-1-丙烷磺酸钠(MPS)及Cl-在铜电极表面的竞争吸附行为。在较正电位区间, BTAH分子在铜电极表面的吸附主要是通过三唑环在铜电极表面形成[Cu(BTA)]n聚合物膜; 随着电位负移, 聚合物膜逐渐转化为BTAH分子形式吸附在铜电极表面。而MPS主要是以巯基端吸附在铜电极表面, 其吸附方向的改变使得其在铜表面的拉曼信号呈现出先强后弱的趋势。Cl-主要是以Cu-Cl的形式存在,占据电极表面的活性位点与MPS产生协同作用。当三者复配时是以BTAH在电极表面的强吸附性为主导,且随着电位的负移,BTAH的拉曼信号呈现出先增强再减弱的趋势,相较于BTAH的强吸附作用, MPS与Cl-在电极表面的吸附强度较弱但依旧可以监测到两者参与竞争吸附的过程。
沈银飞, 陈艳丽, 王笙戌, 朱晔, 王文昌, 吴敏娴, 陈智栋. 酸性溶液中苯并三氮唑和3-巯基-1-丙烷磺酸钠在铜电极表面的电化学SERS研究[J]. 电化学(中英文), 2022, 28(6): 2104451.
Yin-Fei Shen, Yan-Li Chen, Sheng-Xu Wang, Ye Zhu, Wen-Chang Wang, Min-Xian Wu, Zhi-Dong Chen. Electrochemical SERS study of Benzotriazole and 3-mercapto-1-propanesulfonate in Acidic Solution on Copper Electrode[J]. Journal of Electrochemistry, 2022, 28(6): 2104451.
[1] |
Frost G, Ladani L. Development of high-temperature-resistant seed layer for electrodeposition of copper for microelectronic applications[J]. J. Electron. Mater., 2020, 49(2): 1387-1395.
doi: 10.1007/s11664-019-07826-y URL |
[2] |
Lee P T, Chang C H, Lee C Y, Wu Y S, Yang C H, Ho C E. High-speed electrodeposition for Cu pillar fabrication and Cu pillar adhesion to an ajinomoto build-up film (ABF)[J]. Mater. Des., 2021, 206: 109830.
doi: 10.1016/j.matdes.2021.109830 URL |
[3] |
Shi X B, Yan W, Yang Z G, Ren Y, Shan Y Y, Yang K. Effect of Cu alloying on strain capacity of Cu-bearing pipeline steels[J]. ISIJ Int., 2020, 60(4): 792-798.
doi: 10.2355/isijinternational.ISIJINT-2019-499 URL |
[4] |
Mahdi J M, Lohrasbi S, Ganji D D, Nsofor E C. Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles[J]. Energy Conv. Manag., 2019, 180: 949-961.
doi: 10.1016/j.enconman.2018.11.038 URL |
[5] |
Jin L(金磊), Yang J Q(杨家强), Yang F Z(杨防祖), Zhan D P(詹东平), Tian Z Q(田中群), Zhou S M(周绍民). Research progresses of copper interconnection in chips[J]. J. Electrochem.(电化学), 2020, 26(4): 521-530.
doi: 10.13208/j.electrochem.200212 |
[6] | Yin L(殷列), Wang Z L(王增林). Behavior of copper electrodeposition in copper electroplating solution with different PEG molecular weight[J]. J. Electrochem.(电化学), 2008, 14(4): 431-435. |
[7] | Zhang L M(张立茗), Fang J L(方景礼), Yuan G W(袁国伟), Shen P (沈品华). Practical plating additive[M]. China: Chemical Industry Press, 2007. |
[8] |
Wang Q, Tan B M, Gao B H, Tian S Y, Han C Y, Yang L. Study on the adsorption and inhibition mechanism of 1,2,4-triazole on copper surface in copper interconnection CMP[J]. ECS J. Solid State Sci. Technol., 2019, 8(6): P313-P318.
doi: 10.1149/2.0121906jss URL |
[9] |
Jin Y, Sui Y F, Wen L, Ye F M, Sun M, Wang Q M. Competitive adsorption of PEG and SPS on copper surface in acidic electrolyte containing Cl-[J]. J. Electrochem. Soc., 2013, 160(1): D20-D27.
doi: 10.1149/2.021302jes URL |
[10] |
Hai N T M, Huynh T T M, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P. Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating[J]. Electrochim. Acta, 2012, 70: 286-295.
doi: 10.1016/j.electacta.2012.03.054 URL |
[11] | Shen J, Luo W, Dong W H, Li M. Seventeenth International Conference on Electronic Packaging Technology (ICEPT), August 16-19, 2016[C]. China: IEEE, 2016. |
[12] |
Lee M H, Kim M J, Kim J J. Competitive adsorption between bromide ions and bis(3-Sulfopropyl)-Disulfide for Cu microvia filling[J]. Electrochim. Acta, 2021, 370: 137707.
doi: 10.1016/j.electacta.2020.137707 URL |
[13] | Wang C(王翀), Peng C(彭川), Xiang J(向静), Chen Y M(陈苑明), He W(何为), Su X H(苏新虹), Luo Y Y(罗毓瑶). Research and application of copper electroplating in interconnection of printed circuit board[J]. J. Electrochem.(电化学), 2021, 27(3): 257-268. |
[14] |
Wu H Y, Wang Y, Li Z Y, Zhu W H. Investigations of the electrochemical performance and filling effects of additives on electroplating process of TSV[J]. Sci. Rep., 2020, 10(1): 9204.
doi: 10.1038/s41598-020-66191-7 URL |
[15] |
Finsgar M, Milosev I. Inhibition of copper corrosion by 1,2,3-benzotriazole: a review[J]. Corrosion Sci., 2010, 52(9): 2737-2749.
doi: 10.1016/j.corsci.2010.05.002 URL |
[16] |
de Moraes A C M, Siqueira J L P, Barbosa L L, Carlos I A. Voltammetric study of the influence of benzotriazole on copper deposition from a sulphuric plating bath[J]. J. Appl. Electrochem., 2009, 39(3): 369-375.
doi: 10.1007/s10800-008-9680-6 URL |
[17] | Wei P J(韦萍洁), Yuan Y X(袁亚仙), Xu M M(徐敏敏), Yao J L(姚建林), Gu R A(顾仁敖). Electrochemical and surface enhanced Raman spectroscopic studies of benzimidazole on nickel electrode[J]. J. Electrochem.(电化学), 2014, 20(4): 349-352. |
[18] |
Antonijevic M M, Milic S M, Petrovic M B. Films formed on copper surface in chloride media in the presence of azoles[J]. Corrosion Sci., 2009, 51(6): 1228-1237.
doi: 10.1016/j.corsci.2009.03.026 URL |
[19] |
Li F T, Wang Z K, Jiang Y Y, Li C L, Sun S Q, Chen S G, Hu S Q. DFT study on the adsorption of deprotonated benzotriazole on the defective copper surfaces[J]. Corrosion Sci., 2021, 186: 109458.
doi: 10.1016/j.corsci.2021.109458 URL |
[20] |
Thomas S, Venkateswaran S, Kapoor S, D’Cunha R, Mukherjee T. Surface enhanced Raman scattering of benzotriazole: a molecular orientational study[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2004, 60(1-2): 25-29.
doi: 10.1016/S1386-1425(03)00213-0 URL |
[21] |
Chant H Y H, Weaver M J. A vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy[J]. Langmuir, 1999, 15(9): 3348-3355.
doi: 10.1021/la981724f URL |
[22] |
Bastidas D M. Adsorption of benzotriazole on copper surfaces in a hydrochloric acid solution[J]. Surf. Interface Anal., 2006, 38(7): 1146-1152.
doi: 10.1002/sia.2371 URL |
[23] |
Honesty N R, Gewirth A A. Shell-isolated nanoparticle enhanced Raman spectroscopy(SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly)[J]. J. Raman Spectrosc., 2012, 43(1): 46-50.
doi: 10.1002/jrs.2989 URL |
[24] |
Cao P G(曹佩根), Yao J L(姚建林), Zheng J W(郑军伟), Gu R A(顾仁敖), Tian Z Q(田中群). Comparative study of inhibition effects of benzotriazole for metals in neutral solutions as observed with surface-enhanced Raman spectroscopy[J]. Langmuir, 2002, 18(1): 100-104.
doi: 10.1021/la010575p URL |
[25] |
Armstrong M J, Muller R H. In situ scanning tunneling microscopy of copper deposition with benzotriazole[J]. J. Electrochem. Soc., 1991, 138(8): 2303-2307.
doi: 10.1149/1.2085965 URL |
[26] |
Farndon E E, Walsh F C, Campbell S A. Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulphonic acid on the kinetics of copper deposition from dilute acid sulphate solutions[J]. J. Appl. Electrochem., 1995, 25(6): 574-583.
doi: 10.1007/BF00573215 URL |
[27] |
Schmidt W U, Alkire R C, Gewirth A A. Mechanic study of copper deposition onto gold surfaces by scaling and spectral analysis of in situ atomic force microscopic images[J]. J. Electrochem. Soc., 1996, 143(10): 3122-3132.
doi: 10.1149/1.1837174 URL |
[28] |
Kim J J, Kim S K, Bae J U. Investigation of copper deposition in the presence of benzotriazole[J]. Thin Solid Films, 2002, 415(1-2): 101-107.
doi: 10.1016/S0040-6090(02)00529-1 URL |
[29] |
Zhao S H, Pang K N, Wang X J, Xiao N. Function of sulfhydryl (-HS) group during microvia filling by copper plating[J]. J. Electrochem. Soc., 2020, 167(11): 112502.
doi: 10.1149/1945-7111/aba00c URL |
[30] |
Li Z, Tan B Z, Shi M H, Luo J Y, Hao Z F, He J, Yang G N, Cui C Q. Bis-(sodium sulfoethyl)-disulfide: A promising accelerator for super-conformal copper electrodeposition with wide operating concentration ranges[J]. J. Electrochem. Soc., 2020, 167(4): 042508.
doi: 10.1149/1945-7111/ab7b85 URL |
[31] | Song S J, Choi S R, Kim J G, Kim H G. Effect of molecular weight of polyethylene glycol on copper electrodeposition in the presence of bis-3-sulfopropyl-disulfide[J]. Int. J. Electrochem. Sci., 2016, 11(12): 10067-10079. |
[32] |
Schultz Z D, Feng Z V, Biggin M E, Gewirth A A. Vibrational spectroscopic and mass spectrometric studies of the interaction of bis(3-sulfopropyl)-disulfide with Cu surfaces[J]. J. Electrochem. Soc., 2006, 153(2): C97-C107.
doi: 10.1149/1.2139952 URL |
[33] | Zhong Q(钟琴). Effect of additives MPS, PEG, Cl- on electrodeposition of copper[D]. Chongqing: Chongqing University, 2010. |
[34] | Wang Y(王义). Study on the properties and mechanism of copper microvia filling additive[D]. Jiangxi: Jiangxi University of Science and Technology, 2018. |
[35] |
Dow W P, Li C C, Lin M W, Su G W, Huang C C. Copper fill of microvia using a thiol-modified Cu seed layer and various levelers[J]. J. Electrochem. Soc., 2009, 156(8): D314-D320.
doi: 10.1149/1.3147273 URL |
[36] |
Gu W, Fan X M, Yao J L, Ren B, Gu R A, Tian Z Q. Investigation on surface-enhanced Raman scattering activity on an ex situ ORC roughened nickel electrode[J]. J. Raman Spectrosc., 2009, 40(4): 405-410.
doi: 10.1002/jrs.2141 URL |
[37] |
Yuan Y X, Han S Y, Wang M, Yao J L, Gu R A. Raman spectroscopic studies on surface coordination mechanism of benzotriazole and triphenylphosphine with metals[J]. Vib. Spectrosc., 2009, 51(2): 162-167.
doi: 10.1016/j.vibspec.2009.04.004 URL |
[38] |
Yao H L, Yuan Y X, Gu R A. Negative role of triphenylphosphine in the inhibition of benzotriazole at the Cu surface studied by surface-enhanced Raman spectroscopy[J]. J. Electroanal. Chem., 2004, 573(2): 255-261.
doi: 10.1016/j.jelechem.2004.07.010 URL |
[39] |
Graff M, Bukowska J, Zawada K. Surface enhanced Raman scattering (SERS) of 1-hydroxybenzotriazole adsorbed on a copper electrode surface[J]. J. Electroanal. Chem., 2004, 567(2): 297-303.
doi: 10.1016/j.jelechem.2003.12.048 URL |
[40] |
Yao J L, Ren B, Huang Z F, Cao P G, Gu R A, Tian Z Q. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes[J]. Electro-chim. Acta, 2003, 48(9): 1263-1271.
doi: 10.1016/S0013-4686(02)00834-4 URL |
[41] | Yuan Y X(袁亚仙), Yao J L(姚建林), Gu R A(顾仁敖). Electrochemical surface enhanced Raman spectroscopic studies on the adsorption of benzotriazole at Cu electrode in non-aqueous solution[J]. Acta Chim. Sinica(化学学报), 2006, 64(4): 273-277. |
[42] |
Kudelski A. Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: Comparitive studies by surface-enhanced Raman scattering[J]. J. Raman Spectrosc., 2003, 34(11): 853-862.
doi: 10.1002/jrs.1062 URL |
[43] |
Pasquale M A, Bolzan A E, Guida J A, Piatti R C V, Arvia A J, Piro O E, Castellano E E. A new polymeric [Cu(SO3(CH2)3S-S(CH2)3SO3)(H2O)4]n complex molecule produced from constituents of a super-conformational copper plating bath: Crystal structure, infrared and Raman spectra and thermal behaviour[J]. Solid State Sci., 2007, 9(9): 862-868.
doi: 10.1016/j.solidstatesciences.2007.06.004 URL |
[44] |
Schmitt K G, Schmidt R, Von-Horsten H F, Vazhenin G, Gewirth A A. 3-mercapto-1-propanesulfonate for Cu electrodeposition studied by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, density functional theory calculations, and cyclic voltammetry[J]. J. Phys. Chem. C, 2015, 119(41): 23453-23462.
doi: 10.1021/acs.jpcc.5b06274 URL |
[45] |
Lin Z B, Tian J H, Xie B G, Tang Y A, Sun J J, Chen G N, Ren B, Mao B W, Tian Z Q. Electrochemical and in situ SERS studies on the adsorption of 2-hydroxypyridine and polyethyleneimine during silver electroplating[J]. J. Phys. Chem. C, 2009, 113(21): 9224-9229.
doi: 10.1021/jp809761f URL |
[46] | An W J(安文娟). Study on effect of sulfur and nitrogen-containing additives on roughness of acid electroplated copper and its mechanism[D]. Jiangxi: Jiangxi University of Science and Technology, 2019. |
[1] | 马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101-. |
[2] | 吴炜星, 王莹. 乙烯在钯圆盘电极的电化学氧化研究[J]. 电化学(中英文), 2023, 29(1): 2215004-. |
[3] | 邹浩斌, 谭超力, 熊伟, 席道林, 刘彬云. 酸性镀铜添加剂开发及应用技术[J]. 电化学(中英文), 2022, 28(6): 2104531-. |
[4] | 彭辉远, 王家正, 刘佳, 于欢欢, 林建德, 吴德印, 田中群. 纳米结构金电极上对氨基苯硫酚的电化学反应过程研究[J]. 电化学(中英文), 2022, 28(4): 2106281-. |
[5] | 穆张岩, 丁梦宁. 电输运谱在原位电化学界面测量应用中的最新进展[J]. 电化学(中英文), 2022, 28(3): 2108491-. |
[6] | 王翀, 彭川, 向静, 陈苑明, 何为, 苏新虹, 罗毓瑶. 印制电路中电镀铜技术研究及应用[J]. 电化学(中英文), 2021, 27(3): 257-268. |
[7] | 吴丽文, 王玮, 黄逸凡. 应用镍超微电极的电化学表面增强拉曼光谱技术研究[J]. 电化学(中英文), 2021, 27(2): 208-215. |
[8] | 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学(中英文), 2020, 26(1): 3-18. |
[9] | 李明雪, 史 杭, 刘 佳, 张 檬, 周剑章, 吴德印, 田中群. 金电极上偶氮腺嘌呤的电化学行为研究[J]. 电化学(中英文), 2019, 25(6): 651-659. |
[10] | 赵文君, 贾秉鑫, 张亚南, 关久念, 曲 蛟, 路 莹. 活性炭纤维电吸附重金属及磺胺甲恶唑性能研究[J]. 电化学(中英文), 2019, 25(6): 669-681. |
[11] | 凌 云, 汤 儆, 刘国坤, 宗 铖. 暂态电化学表面增强拉曼光谱研究对硝基苯硫酚分子的电化学还原过程[J]. 电化学(中英文), 2019, 25(6): 731-739. |
[12] | 张 悦, 冯涛涛, 纪文亮, 张美宁. L-半胱氨酸和胱胺共自组装膜活体检测抗坏血酸[J]. 电化学(中英文), 2019, 25(3): 400-408. |
[13] | 秦斌,景粉宁,孙雪敬,孙公权,孙海. 空气中SO2 对直接甲醇燃料电池性能影响[J]. 电化学(中英文), 2018, 24(6): 707-714. |
[14] | 乔文磊,杜晓,高凤凤,郑君兰,李莎莎,郝晓刚. 一步共沉积法制备ZSM-5/PANI/PSS电活性膜及其电控选择性分离重金属Pb2+的动力学特性[J]. 电化学(中英文), 2018, 24(2): 143-153. |
[15] | 杨莉君,Dustin Banham, Elod Gyenge,叶思宇. Nafion含量与阴离子吸附对于铂单原子层核壳结构催化剂制备的影响[J]. 电化学(中英文), 2017, 23(2): 170-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||