电化学(中英文) ›› 2021, Vol. 27 ›› Issue (5): 529-539. doi: 10.13208/j.electrochem.200830
收稿日期:
2020-09-05
修回日期:
2020-10-30
出版日期:
2021-10-28
发布日期:
2020-11-12
通讯作者:
胡硕真
E-mail:shuozhen.hu@ecust.edu.cn
Bo Huang, Xin-Sheng Zhang, Dong-Fang Niu, Shuo-Zhen Hu*()
Received:
2020-09-05
Revised:
2020-10-30
Published:
2021-10-28
Online:
2020-11-12
Contact:
Shuo-Zhen Hu
E-mail:shuozhen.hu@ecust.edu.cn
摘要:
研究了四种不同烷基链长度的对称季铵碱对草酸电还原制备乙醛酸反应的影响。线性扫描测试考察了添加剂对铅电极上阴极反应的影响,结果表明对称季铵碱在电极表面的吸附对析氢反应的抑制程度大于其对草酸电还原反应的抑制程度,且随着对称季铵碱中烷基链长度的增加,添加剂抑制析氢反应效果更明显。计时安培法的结果证明添加剂可影响草酸向电极表面的扩散,随着对称季铵碱中烷基链长度的增加,草酸的扩散系数呈现出先增加后减小的趋势。恒流电解实验结果表明,添加剂能有效提高草酸电还原反应的电流效率,且提高效果随对称季铵碱所含烷基链长度的增加而增强。因此,添加剂的吸附对阴极表面析氢反应的抑制作用是草酸电还原反应电流效率提高的主要原因。本研究表明,四丁基氢氧化铵为添加剂时,草酸还原为乙醛酸的电流效率最高。
黄波, 张新胜, 钮东方, 胡硕真. 对称季铵碱的烷基链长度对草酸电还原反应的影响[J]. 电化学(中英文), 2021, 27(5): 529-539.
Bo Huang, Xin-Sheng Zhang, Dong-Fang Niu, Shuo-Zhen Hu. Effect of Alkyl Chain Length of Symmetrical Quaternary Ammonium Hydroxide on Oxalic Acid Electroreduction Reaction[J]. Journal of Electrochemistry, 2021, 27(5): 529-539.
[1] | Abdulwahed M, Mamoly L, Bosnali W. A simple spectrophotometric method for determination of glyoxylic acid in its synjournal mixture[J]. Int. J. Anal. Chem., 2020: 5417549. |
[2] |
Niu Y L, Xu Z, Li M, Li R F. Oxidation of glyoxal to glyoxylic acid by oxygen over V2O5/C catalyst[J]. Chin. Chem. Lett., 2008, 19(2): 245-248.
doi: 10.1016/j.cclet.2007.11.015 URL |
[3] |
Hermans S, Thiltges F, Deffenez A, Devillers M. Molybdenum oxoanions as dispersing agents in the preparation of Pd/C catalysts for the selective oxidation of glyoxal[J]. Catal. Lett., 2012, 142(5): 521-530.
doi: 10.1007/s10562-012-0804-6 URL |
[4] |
Pope F D, Gallimore P J, Fuller S J. Ozonolysis of maleic acid aerosols: Effect upon aerosol hygroscopicity, phase and mass[J]. Environ. Sci. Technol., 2010, 44(17): 6656-6660.
doi: 10.1021/es1008278 pmid: 20701273 |
[5] |
Pozdniakov M A, Zhuk I V, Lyapunova M V, Salikov A S, Botvin V V, Filimoshkin A G. Glyoxylic acid synjournal, isolation, and crystallization[J]. Russ. Chem. Bull., 2019, 68(3): 472-479.
doi: 10.1007/s11172-019-2442-2 URL |
[6] |
Pierre G, Ziade A. The oxidation of glyoxal and ethylene glycol on platinum containing in aqueous acid mediums some metal salts[J]. Electrochim. Acta, 1987, 32(4): 601-606.
doi: 10.1016/0013-4686(87)87048-2 URL |
[7] |
Kimura M, Kobayashi K, Yamamoto Y, Sawaki Y. Electrooxidative pinacol-type rearrangement of β-hydroxy sulfides. Efficient C-S cleavage mediated by chloride ion oxidation[J]. Tetrahedron, 1996, 52(12): 4303-4310.
doi: 10.1016/0040-4020(96)00130-5 URL |
[8] | Danly D E. Adiponitrile via improved EHD[J]. Hydrocarb Process, 1981, 60(4): 161-164. |
[9] | Scott K. Electrolytic reduction of oxalic acid to glyoxylic acid: A problem of electrode deactivation[J]. Chem. Eng. Res. Des., 1986, 64(4): 266-271. |
[10] |
Ochoa J R, Diego A D, Santa-Olalla J. Electrosynjournal of glyoxylic acid using a continuously electrogenerated lead cathod[J]. J. Appl. Electrochem., 1993, 23(9): 905-909.
doi: 10.1007/BF00251025 URL |
[11] |
Chen B A, Xu J, Wang L M, Song L F, Wu S Y. Synjournal of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating[J]. ACS Appl. Mater. Inter., 2017, 9(8): 7793-7803.
doi: 10.1021/acsami.6b15400 URL |
[12] |
Xu J, Chen B, Lv J, Chang D D, Niu D F, Hu S Z, Zhang X S, Xin Z, Wang L M. Aryl modification of diketopyrrolopyrrole-based quaternary ammonium salts and their applications in copper electrodeposition[J]. Dyes Pigments, 2019, 170: 107559.
doi: 10.1016/j.dyepig.2019.107559 URL |
[13] |
Miao Z W, Pei F B, Liu Z W, Zhang Z, Yu R J, Liu R S. Preparation of highly purity tetrabutyl ammonium hydroxide using a novel method of electro-electrodialysis: The study on mass transfer process and influencing factors[J]. J. Membrane. Sci., 2018, 567: 281-289.
doi: 10.1016/j.memsci.2018.09.045 URL |
[14] |
Huang X, Tan L Q, Zhang L, Li C P, Wei Z D. Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode[J]. Chem. Eng. J., 2020, 382: 123006.
doi: 10.1016/j.cej.2019.123006 URL |
[15] |
Blanco D E, Dookhith A Z, Modestino M A. Enhancing selectivity and efficiency in the electrochemical synjournal of adiponitrile[J]. React. Chem. Eng., 2019, 4(1): 8-16.
doi: 10.1039/C8RE00262B URL |
[16] |
Goodridge F, Lister K, Plimley R E. Scale-up studies of the electrolytic reduction of oxalic to glyoxylic acid[J]. J. Appl. Electrochem., 1980, 10(1): 55-60.
doi: 10.1007/BF00937338 URL |
[17] |
Zhou Y L, Zhang X S, Dai Y C, Yuan W K. Studies on chemical activators for electrode I: Electrochemical activation of deactivating cathode for oxalic acid reduction[J]. Chem. Eng. Sci., 2003, 58(3-6): 1021-1027.
doi: 10.1016/S0009-2509(02)00643-7 URL |
[18] | Jin L(金玲), Zhang X S(张新胜). Additives structure in electroreduction of oxalic acid[J]. CIESC Journal(化工学报), 2010, 61(S1): 86-90. |
[19] |
Jin L, Pang C X, Zhang X S, Niu L, Yuan W K. Determination of glyoxylic acid in organic electrosynjournal using the differential pulse polarography[J]. Asian J. Chem., 2013, 25(18): 10102-10106.
doi: 10.14233/ajchem URL |
[20] | Wade.R C, Guilbault L J. Electrolytic method for producing quaternary ammonium hydroxides: American, US4394226-A1[P]. 1983-7-19. |
[21] | Yang J(杨娇), Zhang X S(张新胜). Preparation of electronic tetrabutylammonium hydroxide by ion-exchange membrane electrolysis[J]. CIESC Journal(化工学报), 2010, 61(S1): 77-81. |
[22] | Campbell C R, Spiegelhalter R R. Preparation of quaternary ammonium hydroxides by electrolysis: American, US43943265-A1[P]. 1968-9-17. |
[23] |
Scott K. The role of remperatre in oxalic acid electroreduction[J]. Electrochim. Acta, 1992, 37(8): 1381-1388.
doi: 10.1016/0013-4686(92)87011-N URL |
[24] | Liu X(刘欣), Li Z Y(李宇展), Hu R S(胡瑞省), Gu D P(顾登平). Studies on the mechanism of electroreduction of oxalic acid[J]. J. Electrochem.(电化学), 2004, 10(1): 41-45. |
[25] |
Pickett D J, Yap K S. A study of the production of glyoxylic acid by the electrochemical reduction of oxalic acid solutions[J]. J. Appl. Electrochem., 1974, 4: 17-23.
doi: 10.1007/BF00615902 URL |
[26] |
Fan Y H, Haseltine J. Interactive delocalizations that control an aqueous organic equilibrium[J]. Tetrahedron Lett., 1996, 37(52): 9279-9282.
doi: 10.1016/S0040-4039(97)82941-3 URL |
[27] |
Liu N N, Senthil R A, Zhang X, Pan J Q, Sun Y Z, Liu X G. A green and cost-effective process for recovery of high purity α-PbO from spent lead acid batteries[J]. J. Clean. Prod., 2020, 267: 122107.
doi: 10.1016/j.jclepro.2020.122107 URL |
[28] |
Ijomah M N C. Electrochemical behavior of some lead alloys[J]. J. Electrochem. Soc., 1987, 134(12): 2960-2966.
doi: 10.1149/1.2100323 URL |
[29] |
Zhang B, Zhong J H, Li W J, Dai Z Y, Zhang B, Cheng Z M. Transformation of inert PbSO4 deposit on the negative electrode of a lead-acid battery into its active state[J]. J. Power Sources, 2010, 195(13): 4338-4343.
doi: 10.1016/j.jpowsour.2010.01.038 URL |
[30] |
Kawasaki A, Nishihama S, Yoshizuka K. Adsorption of tetraalkyl ammonium hydroxide with mesoporous silica[J]. Sep. Sci. Technol., 2012, 47(9): 1356-1360.
doi: 10.1080/01496395.2012.672522 URL |
[31] |
Marcus Y. Tetraalkylammonium ions in aqueous and non-aqueous solutions[J]. J. Solution Chem., 2008, 37(8): 1071-1098.
doi: 10.1007/s10953-008-9291-1 URL |
[32] |
Anson F C. Chronocoulometry: A convenient, rapid and reliable technique for detection and determination of adsorbed reactants[J]. J. Chem. Educ., 1983, 60(4): 293-296.
doi: 10.1021/ed060p293 URL |
[33] |
Golabi S M, Irannejad L. Preparation and electrochemical study of fisetin modified glassy carbon electrode. Application to the determination of NADH and ascorbic acid[J]. Electroanalysis, 2005, 17(11): 985-996.
doi: 10.1002/(ISSN)1521-4109 URL |
[34] |
Raoof J B, Ojani R, Rashid-Nadimi S. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid[J]. Electrochim. Acta, 2004, 49(2): 271-280.
doi: 10.1016/j.electacta.2003.08.009 URL |
[35] |
Zhu J L, Zhou Y H, Gao C Q. Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution[J]. J. Power Sources, 1998, 72: 231-235.
doi: 10.1016/S0378-7753(97)02705-5 URL |
[36] |
Seo D W, Sarker S, Nath N C D, Choi S W, Ahammad A J S, Lee J J, Kim W G. Synjournal of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells[J]. Electrochim. Acta, 2010, 55(4): 1483-1488.
doi: 10.1016/j.electacta.2009.05.007 URL |
[37] |
Dehmlow E V. Phase-transfer catalyzed two-phase reactions in preparative organic chemistry[J]. Angew. Chem. Int. Ed., 1974, 13(3): 170-179.
doi: 10.1002/(ISSN)1521-3773 URL |
[38] | Zhao C T(赵崇涛), Zhu Z S(朱则善). Study on synthesizing of 2-methylbutanoic acid by indirect electrooxidation[J]. J. Electrochem.(电化学), 1999, 5(3): 310-313. |
[39] |
Shabestary N, Khazaeli S, Hickman R. Phase-transfer catalytic reaction: A physical chemistry laboratory experiment[J]. J. Chem. Educ., 1998, 75(11): 1470-1472.
doi: 10.1021/ed075p1470 URL |
[40] |
Makosza M, Fedorynski M. Phase transfer catalysis - basic principles, mechanism and specific features[J]. Curr. Catal., 2012, 1(2): 79-87.
doi: 10.2174/2211544711201020079 URL |
[41] | Davies. J A. Synthetic coordination chemistry: Principles and practice[M]. Ohio: World Science Publishing Co. Ptc. Ltd., 1996: 362. |
[42] |
Chen W C, Ho B H. Diffusion coefficients of acrylic mono-mers in poly(methyl methylacrylate)[J]. J. Polym. Res., 1998, 5(3): 187-191.
doi: 10.1007/s10965-006-0055-6 URL |
[1] | 王非, 翟欢欢, 王杜丹, 李玉鹏, 陈康华. Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究[J]. 电化学(中英文), 2020, 26(1): 148-155. |
[2] | 张鼎,朱芹,王瑛,赵成龙,刘世斌,徐守冬. 二氟草酸硼酸钠作为钠离子电池非水电解液添加剂的电化学性能[J]. 电化学(中英文), 2017, 23(4): 473-479. |
[3] | 宋秀丽, 贾瑞龙, 董文燕, 梁镇海. 乙炔电催化氧化制备草酸的机理研究[J]. 电化学(中英文), 2015, 21(4): 353-361. |
[4] | 姚洋洋, 刘冬冬, 王莉, 何向明, 李建军, 张鼎. 二氟草酸硼酸钠作为电解液添加剂对石墨负极性能的影响[J]. 电化学(中英文), 2015, 21(4): 387-392. |
[5] | 苏静, 林海波, 徐红, 黄卫民, 何亚鹏. 草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化降解动力学[J]. 电化学(中英文), 2013, 19(4): 293-299. |
[6] | 王清芝, 王炜. Fe(Ⅲ)-草酸-葡萄糖酸钙媒质体系间接电化学还原及棉织物染色的研究[J]. 电化学(中英文), 2011, 17(4): 444-447. |
[7] | 马淳安, 郑勤安, 周强, 徐颖华, . 对氨基苯胂酸电化学合成的研究[J]. 电化学(中英文), 2010, 16(1): 70-73. |
[8] | 张超, 李培金, . 离子交换膜法合成2,2′-二氯氢化偶氮苯[J]. 电化学(中英文), 2008, 14(1): 61-65. |
[9] | 李清彪, 胡晓慧, 陈学云, 李薇, 苏玉忠, 李军, . 阴极冷却固定床电合成乙醛酸的连续过程模拟[J]. 电化学(中英文), 2007, 13(2): 145-150. |
[10] | 申丹丹, 杨防祖, 吴辉煌, . 2,2′-联吡啶和亚铁氰化钾对乙醛酸化学镀铜的影响[J]. 电化学(中英文), 2007, 13(1): 67-71. |
[11] | 胡晓慧;剡翔飞;苏玉忠;李军;李清彪;. 草酸电解合成乙醛酸连续化工艺研究[J]. 电化学(中英文), 2005, 11(4): 425-429. |
[12] | 吴丽琼;杨防祖;黄令;孙世刚;周绍民;. 乙醛酸化学镀铜的电化学研究[J]. 电化学(中英文), 2005, 11(4): 402-406. |
[13] | 刘欣,李宇展,胡瑞省,顾登平. 草酸电还原反应机理的研究[J]. 电化学(中英文), 2004, 10(1): 41-45. |
[14] | 樊金红,李军,陈学云,李薇,高浩其. 阴极冷却反应器电合成乙醛酸[J]. 电化学(中英文), 2002, 8(2): 213-218. |
[15] | 樊金红, 李军, 苏玉忠, 高浩其. 固定床反应器电合成乙醛酸的研究[J]. 电化学(中英文), 2002, 8(1): 73-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||