[1] Lawlor V, Griesser S, Buchinger G, et al. Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities[J]. Journal of power sources, 2009, 193(2): 387-399.[2] Suzuki T, Yamaguchi T, Fujishiro Y, et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC[J]. Journal of the Electrochemical Society, 2006, 153(5): A925-A928.[3] Lee T J, Kendall K. Characterisation of electrical performance of anode supported micro-tubular solid oxide fuel cell with methane fuel[J]. Journal of Power Sources, 2008, 181(2): 195-198.[4] Steele B C H. Fuel-cell technology: Running on natural gas[J]. Nature, 1999, 400(6745): 619-621.[5] Zhan Z, Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308(5723): 844-847.[6] Gunji A, Wen C, Otomo J, et al. Carbon deposition behaviour on Ni-ScSZ anodes for internal reforming solid oxide fuel cells[J]. Journal of power sources, 2004, 131(1): 285-288.[7] Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons[J]. Journal of catalysis, 2003, 216(1): 477-486.[8] Park S, Craciun R, Vohs J M, et al. Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation[J]. Journal of the Electrochemical Society, 1999, 146(10): 3603-3605.[9] McIntosh S, Vohs J M, Gorte R J. An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes[J]. Electrochemica acta, 2002, 47(22): 3815-3821.[10] McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104(10): 4845-4866.[11] Brett D J L, Atkinson A, Cumming D, et al. Methanol as a direct fuel in intermediate temperature solid oxide fuel cells with copper based anodes[J]. Chemical Engineering Science, 2005, 60(21): 5649-5662.[12] Sun C, Stimming U. Recent anode advances in solid oxide fuel cells[J]. Journal of Power Sources, 2007, 171(2): 247-260.[13] Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400(6745): 649-651.[14] Qi X, Flytzani-Stephanopoulos M. Activity and stability of Cu-CeO2 catalysts in high-temperature water-gas shift for fuel-cell applications[J]. Industrial & engineering chemistry research, 2004, 43(12): 3055-3062.[15] Bi Z H, Zhu J H. A Cu-CeO2-LDC composite anode for LSGM electrolyte-supported solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2009, 12(7): B107-B111.[16] Qiao J, Zhang N, Wang Z, et al. Performance of mix impregnated CeO2 Ni/YSZ anodes for direct oxidation of methane in solid oxide fuel cells[J]. Fuel Cells, 2009, 9(5): 729-739.[17] Ye X F, Zhou J, Wang S R, et al. Research of carbon deposition formation and judgment in Cu-CeO2-ScSZ anodes for direct ethanol solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(1): 505-510.[18] Tao S, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323.[19] Tao S, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of The Electrochemical Society, 2004, 151(2): A252-A259.[20] Périllat-Merceroz C, Gauthier G, Roussel P, et al. Synthesis and study of a Ce-doped La/Sr titanate for solid oxide fuel cell anode operating directly on methane[J]. Chemistry of Materials, 2011, 23(6): 1539-1550.[21] Kim J H, Miller D, Schlegl H, et al. Investigation of microstructural and electrochemical properties of impregnated (La, Sr)(Ti, Mn) O3±δ as a potential anode material in high-temperature solid oxide fuel cells[J]. Chemistry of Materials, 2011, 23(17): 3841-3847.[22] Monteiro N K, Noronha F B, Da Costa L O O, et al. A direct ethanol anode for solid oxide fuel cell based on a chromite-manganite with catalytic ruthenium nanoparticles[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9816-9829.[23] Zhan Z, Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308(5723): 844-847.[24] Zhan Z, Lin Y, Pillai M, et al. High-rate electrochemical partial oxidation of methane in solid oxide fuel cells[J]. Journal of power sources, 2006, 161(1): 460-465.[25] Jiang S P, Chan S H. Review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39(14): 4405-4439.[26] Wang W, Ran R, Shao Z. Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane[J]. International Journal of Hydrogen Energy, 2011, 36(1): 755-764.[27] Hornés A, Bera P, Fernández-García M, et al. Catalytic and redox properties of bimetallic Cu-Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition[J].Applied Catalysis B: Environmental,2012,111: 96-105.[28] Yun J W, Yoon S P, Kim H S, et al. Effect of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4356-4366.[29] Zhu H, Wang W, Ran R, et al. A new nickel-ceria composite for direct-methane solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(9): 3741-3749.[30] Jin C, Yang C, Zheng H, et al. Intermediate temperature solid oxide fuel cells with Cu1.3Mn1.7O4 internal reforming layer[J]. Journal of Power Sources, 2012, 201: 66-71.[31] Bo Huang, S.R. Wang, R.Z. Liu, et al. Performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel[J]. Journal of Power Sources, 2007, 167(1): 39-46.[32] Ye X F, Wang S R, Wang Z R, et al. Use of a catalyst layer for anode-supported SOFCs running on ethanol fuel[J]. Journal of Power Sources, 2008, 177(2): 419-425.[33] Ioselevich A, Kornyshev A A, Lehnert W. Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation[J]. Solid State Ionics, 1999, 124(3): 221-237.[34] Ioselevich A, Kornyshev A A, Lehnert W. Degradation of solid oxide fuel cell anodes due to sintering of metal particles correlated percolation model[J]. Journal of the Electrochemical Society, 1997, 144(9): 3010-3019. |