电化学(中英文) ›› 2022, Vol. 28 ›› Issue (11): 2219004. doi: 10.13208/j.electrochem.2219004
所属专题: “下一代二次电池”专题文章
收稿日期:
2022-09-06
修回日期:
2022-09-30
出版日期:
2022-11-28
发布日期:
2022-10-19
Xiao-Ru Yun, Yu-Fang Chen*(), Pei-Tao Xiao*(), Chun-Man Zheng*()
Received:
2022-09-06
Revised:
2022-09-30
Published:
2022-11-28
Online:
2022-10-19
Contact:
* Tel: (86-731)87007201, E-mail: chenyufang@nudt.edu.cn,E-mail: xiaopt@nudt.edu.cn,E-mail: zhengchunman@nudt.edu.cn
摘要:
水系锌离子电池具有功率密度高、环境友好、安全性高、低成本和锌资源丰富等优点,被认为具有潜力成为下一代电化学储能系统。然而,正极材料较差的电化学性能制约了水系锌离子电池的未来发展。尽管氧化锰、氧化钒、普鲁士蓝类似物、有机材料等多种材料已被广泛研究,设计具有高性能的理想正极材料仍面临着巨大挑战。无氧钒基化合物由于具有高的电导率、大的层间距、低的离子扩散势垒和高的理论比容量,受到越来越多的关注。本文总结了无氧钒基化合物的研究进展,包括电极材料的设计、改善其电化学性能的有效途径以及复杂的储能机制,提出了无氧钒基化合物目前面临的挑战和未来的发展前景,为进一步制备新型高性能钒基正极材料提供指导。
贠潇如, 陈宇方, 肖培涛, 郑春满. 关于水系锌离子电池中无氧钒基正极材料的综述[J]. 电化学(中英文), 2022, 28(11): 2219004.
Xiao-Ru Yun, Yu-Fang Chen, Pei-Tao Xiao, Chun-Man Zheng. Review on Oxygen-Free Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries[J]. Journal of Electrochemistry, 2022, 28(11): 2219004.
Material | Electrolyte | Voltage range/V | Specific capacity/mAh·g-1(current density/ A·g-1) | Capacity retention (current density/ A·g-1; cycles numbers) | Ref. |
---|---|---|---|---|---|
VS2 | 1 mol·L-1 ZnSO4 | 0.4 ~ 1.0 | 190.3 (0.05) | 98% (0.5; 200) | [ |
VS4@rGO | 1 mol·L-1 Zn(CF3SO3)2 | 0.35 ~ 1.8 | 180 (1.0) | 93.3% (1; 165) | [ |
VS2@SS | 1 mol·L-1 ZnSO4 | 0.4 ~ 1.0 | 198 (0.05) | 80% (1; 1600) | [ |
VS2@VOOH | 3 mol·L-1 ZnSO4 | 0.4 ~ 1.0 | 184.2 (0.05) | 82% (2.5; 400) | [ |
D-VS2 | 1 mol·L-1 ZnSO4 | 0.2 ~ 1.7 | 262 (0.1) | 94% (0.1; 100) | [ |
VS2/VOx | 25 mol·L-1 ZnCl2 | 0.1 ~ 1.8 | 301 (0.05) | 75% (1; 3000) | [ |
VS4 | 1 mol·L-1 ZnSO4 | 0.2 ~ 1.6 | 310 (0.1) | - | [ |
VS4/V2O3 | 3 mol·L-1 Zn(CF3SO3)2 | 0.3 ~ 1.2 | 163 (0.1) | / | [ |
VS2/CC | PVA-Zn/Mn hydrogel | 0.4 ~ 1.0 | 175 (0.2) | ~65% (0.2; 40) | [ |
VS2@N-C | 3 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 1.8 | 203 (0.05) | 97% (1; 600) | [ |
Mn-VS4 | 1 mol·L-1 Zn(OTf)2 ACN/water (1:1) | 0.3 ~ 2.0 | 547 (0.2) | 97.83% (1; 1000) | [ |
V2O5·3H2O@VS2 | 3 mol·L-1 ZnSO4 EG/water (1:4) | 0.3 ~ 1.6 | 290 (0.5) | 69.7% (5; 6700) | [ |
VS4/CNTs | 2 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 1.7 | 265 (0.25) | 93% (5; 1200) | [ |
1T-VS2 | 2.5 mol·L-1 Zn(CF3SO3)2 | 0.4 ~ 0.85 | 212.9 (0.1) | 86.7% (2; 2000) | [ |
VS2 | 1 mol·L-1 ZnSO4 | 0.2 ~ 1.0 | 450.7 (0.1) | 72% (1; 200) | [ |
VS2·NH3 | 2 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 1.7 | 392 (0.1) | 110% (3; 2000) | [ |
VNxOy | 2 mol·L-1 ZnSO4 | 0.4 ~ 1.4 | 240 (1) | 95% (1; 50) 75% (20; 2000) | [ |
ZnO-QDs-VN- | 1 mol·L-1 Zn(CF3SO3)2 | 0.4 ~ 1.6 | 384.1 (0.1) | ~60% (5; 1800) | [ |
0.5O-VN | 3 mol·L-1 ZnSO4 | 0.2 ~ 2.0 | 705 (0.2) | 60.5% (1; 200) | [ |
VN@rGO | 3 mol·L-1 ZnSO4 | 0.2 ~ 1.8 | 343 (0.2) | 94.68% (1; 585) 91.24% (20; 10900) | [ |
VN | 3.5 mol·L-1 ZnSO4 | 0.2 ~ 1.8 | 496 (0.1) | 53.6% (20; 8000) | [ |
VN/C | 3.5 mol·L-1 ZnSO4 | 0.2 ~ 1.8 | 321 (0.5) | 76.6% (15; 6780) 95% (0.5; 720) | [ |
VNxOy/C | 3 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 1.6 | 407.4 (0.5) | 93.4% (5; 2000) | [ |
VN@NGr | 3 mol·L-1 ZnSO4 | 0.2 ~ 1.8 | ~170 (0.5) | 96.49% (0.1; 75) 70% (20; 26000) | [ |
VN/MXene | 3 mol·L-1 Zn(CF3SO3)2 | 0.1 ~ 1.6 | 521 (0.5) | 82.8% (5; 2000) | [ |
VN/NC | 3 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 1.8 | 566 (0.2) | 85% (10; 1000) | [ |
VN-rGO | 1 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 2.0 | 809 (0.1) | 78% (1; 400) | [ |
VSe2 | 2 mol·L-1 ZnSO4 | 0.1 ~ 1.6 | 250.6 (0.2) | 83% (2; 800) | [ |
VSe2 | 2 mol·L-1 ZnSO4 | 0.2 ~ 1.6 | 131.8 (0.1) | 80.8% (1; 500) | [ |
VSe2-x-SS | 3 mol·L-1 Zn(CF3SO3)2 | 0.4 ~ 1.6 | 241.2 (0.2) | 87.8% (4; 1800) | [ |
rGO-VSe2 | 2 mol·L-1 ZnSO4 | 0.2 ~ 1.4 | 221.5 (0.5) | 91.6% ( 0.5; 150) | [ |
Material | Electrolyte | Voltage range/V | Specific capacity/mAh·g-1(current density/ A·g-1) | Capacity retention (current density/ A·g-1; cycles numbers) | Ref. |
V2O5@V2C | 2.5 mol·L-1 ZnSO4 | 0.2 ~ 1.4 | 397 (0.5) | 87% (4; 2000) | [ |
VO2@V2C | 3 mol·L-1 Zn(CF3SO3)2 | 0.2 ~ 1.2 | 456 (0.2) | 81% (5; 1000) | [ |
NVGO | 6 mol·L-1 KOH | 1.2 ~ 2.1 | 253.9 (0.5) | 70% (4.5; 500) | [ |
V2CTx | 3 mol·L-1 ZnSO4+1 mol·L-1 Li2SO4 | 0.25 ~ 1.6 | 423 (1.0) | ~94% (30; 2000) | [ |
V2Ox@V2CTx | 1 mol·L-1 ZnSO4 | 0.2 ~ 1.6 | 304 (0.05) | 81.6% (1; 200) | [ |
K-V2C@MnO2 | 2 mol·L-1 ZnSO4+0.25 mol·L-1 MnSO4 | 0.8 ~ 1.8 | 408.1 (0.3) | >100% (10; 10000) | [ |
MS-S-V2CTx | 2 mol·L-1 ZnSO4 | 0.2 ~ 1.8 | 411.3 (0.5) | 80% (10; 3000) | [ |
VSe2@V2CTx | 2 mol·L-1 Zn(CF3SO3)2 | 0.0 ~ 1.6 | 302.1 (0.1) | 93.1% (2; 600) | [ |
[1] | Park S K, Dose W M, Boruah B D, De Volder M. In situ and operando analyses of reaction mechanisms in vanadium oxides for Li-, Na-, Zn-, and Mg- ions batteries[J]. Adv. Mater. Technol., 2021, 7(1): 2100799. |
[2] | Yi T F, Qiu L Y, Qu J P, Liu H Y, Zhang J H, Zhu Y R. Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries[J]. Coordin. Chem. Rev., 2021, 446: 214124. |
[3] | Li X R, Cheng H Y, Hu H, Pan K M, Yuan T T, Xia W T. Recent advances of vanadium-based cathode materials for zinc-ion batteries[J]. Chinese Chem. Lett., 2021, 32(12): 3753-3761. |
[4] | Zhou T, Han Q, Xie L L, Yang X L, Zhu L M, Cao X Y. Recent developments and challenges of vanadium oxides (VxOy) cathodes for aqueous zinc-ion batteries[J]. Chem. Rec., 2022, 22(4): e202100275. |
[5] | Du M, Miao Z Y, Li H Z, Sang Y H, Liu H, Wang S H. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries[J]. J. Mater. Chem. A, 2021, 9(35): 19245-19281. |
[6] | Wang H Y, Ye W Q, Yang Y, Zhong Y J, Hu Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021, 85: 105942. |
[7] |
Wang X, Zhang Z C Y, Xi B J, Chen W H, Jia Y X, Feng J K, Xiong S L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries[J]. ACS Nano, 2021, 15(6): 9244-9272.
doi: 10.1021/acsnano.1c01389 pmid: 34081440 |
[8] | Cai K X, Luo S H, Feng J, Wang J C, Zhan Y, Wang Q, Zhang Y H, Liu X. Recent advances on spinel zinc manganate cathode materials for zinc-ion batteries[J]. Chem. Rec., 2022, 22(1): e202100169. |
[9] |
Zhang N, Chen X Y, Yu M, Niu Z Q, Cheng F Y, Chen J. Materials chemistry for rechargeable zinc-ion batteries[J]. Chem. Soc. Rev., 2020, 49(13): 4203-4219.
doi: 10.1039/c9cs00349e pmid: 32478772 |
[10] | Liu S, Kang L, Kim J M, Chun Y T, Zhang J, Jun S C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries[J]. Adv. Energy Mater., 2020, 10(25): 2000477. |
[11] | Mathew V, Sambandam B, Kim S, Kim S, Park S, Lee S, Alfaruqi M H, Soundharrajan V, Islam S, Putro D Y, Hwang J Y, Sun Y K, Kim J. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Lett., 2020, 5(7): 2376-2400. |
[12] |
Wan F, Niu Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2019, 58(46): 16358-16367.
doi: 10.1002/anie.201903941 pmid: 31050086 |
[13] | Li Y, Zhang D H, Huang S Z, Yang H Y. Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries[J]. Nano Energy, 2021, 85: 105969. |
[14] | Li H F, Ma L T, Han C P, Wang Z F, Liu Z X, Tang Z J, Zhi C Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587. |
[15] | Xu W W, Wang Y. Recent progress on zinc-ion rechargeable batteries[J]. Nanomicro. Lett., 2019, 11(1): 90. |
[16] | Li C, Chen Y F, Zhang J, Jiang H L, Zhu Y H, Jia J H, Bai S X, Fang G Z, Zheng C M. MOF-derived porous carbon inlaid with MnO2 nanoparticles as stable aqueous Zn-ion battery cathodes[J]. Dalton Trans., 2021, 50(47): 17723-17733. |
[17] | Li C, Zheng C M, Jiang H L, Bai S X, Jia J H. Conductive flower-like Ni-PTA-Mn as cathode for aqueous zinc-ion batteries[J]. J. Alloy. Compd., 2021, 882: 160587. |
[18] | Ding J W, Gao H G, Ji D F, Zhao K, Wang S W, Cheng F Y. Vanadium-based cathodes for aqueous zinc-ion batteries: From crystal structures, diffusion channels to storage mechanisms[J]. J. Mater. Chem. A, 2021, 9(9): 5258-5275. |
[19] | He P, Yan M Y, Zhang G B, Sun R M, Chen L N, An Q Y, Mai L Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Adv. Energy Mater., 2017, 7(11): 1601920. |
[20] | Yu D X, Wei Z X, Zhang X Y, Zeng Y, Wang C Z, Chen G, Shen Z X, Du F. Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures[J]. Adv. Funct. Mater., 2020, 31(11): 2008743. |
[21] | Yang H L, Ning P G, Wen J W, Xie Y B, Su C L, Li Y P, Cao H B. Structure control in VNxOy by hydrogen bond association extraction for enhanced zinc ion storage[J]. Electrochimi. Acta, 2021, 389: 138722. |
[22] | Zhu Q C, Xiao Q, Zhang B W, Yan Z C, Liu X, Chen S, Ren Z F, Yu Y. VS4 with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries[J]. J. Mater. Chem. A, 2020, 8(21): 10761-10766. |
[23] | Bai Y C, Zhang H, Xiang B, Yao Q, Dou L, Dong G Y. Engineering porous structure in bi-component-active ZnO quantum dots anchored vanadium nitride boosts reaction kinetics for zinc storage[J]. Nano Energy, 2021, 89: 106386. |
[24] | Narayanasamy M, Hu L T, Kirubasankar B, Liu Z T, Angaiah S, Yan C. Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery[J]. J. Alloys and Compd., 2021, 882: 160704. |
[25] | Jiang W Y, Shi H Z, Shen M, Tang R, Tang Z F, Wang J Q. Molten salt thermal treatment synthesis of S-doped V2CTx and its performance as a cathode in aqueous Zn-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14(12): 14482-14491. |
[26] | Jiao T P, Yang Q, Wu S L, Wang Z F, Chen D, Shen D, Liu B, Cheng J Y, Li H F, Ma L T, Zhi C Y, Zhang W J. Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading[J]. J. Mater. Chem. A, 2019, 7(27): 16330-16338. |
[27] | Tan Y, Li S W, Zhao X D, Wang Y, Shen Q Y, Qu X H, Liu Y C, Jiao L F. Unexpected role of the interlayer “dead Zn2+” in strengthening the nanostructures of VS2 cathodes for high-performance aqueous Zn-ion storage[J]. Adv. Energy Mater., 2022, 12(19): 2104001. |
[28] | Dong L B, Yang W, Yang W, Li Y, Wu W J, Wang G X. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors[J]. J. Mater. Chem. A, 2019, 7(23): 13810-13832. |
[29] | Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Flexible Zn-ion batteries: Recent progresses and challenges[J]. Small, 2019, 15(7): 1804760. |
[30] | Wang X, Li Y G, Wang S, Zhou F, Das P, Sun C L, Zheng S H, Wu Z S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability[J]. Adv. Energy Mater., 2020, 10(22): 2000081. |
[31] | Yan M Y, He P, Chen Y, Wang S Y, Wei Q L, Zhao K N, Xu X, An Q Y, Shuang Y, Shao Y Y, Mueller K T, Mai L Q, Liu J, Yang J H. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries[J]. Adv. Mater., 2018, 30(1), 1703725. |
[32] | Dai X, Wan F, Zhang L L, Cao H M, Niu Z Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance[J]. Energy Storage Mater., 2019, 17: 143-150. |
[33] | Pang Q, Sun C L, Yu Y H, Zhao K N, Zhang Z Y, Voyles P M, Chen G, Wei Y J, Wang X D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity[J]. Adv. Energy Mater., 2018, 8(19): 1800144. |
[34] | Hu P, Zhu T, Wang X P, Zhou X F, Wei X J, Yao X H, Luo W, Shi C W, Owusu K A, Zhou L, Mai L Q. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation[J]. Nano Energy, 2019, 58: 492-498. |
[35] | Li C, Zheng C M, Jiang H L, Bai S X, Jia J H. Synergistic effect of structural stability and oxygen vacancies enabling long-life aqueous zinc-ion battery[J]. Mater Lett., 2021, 302: 130373. |
[36] | Liu J P, Peng W C, Li Y, Zhang F B, Fan X B. A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries[J]. J. Mater. Chem. C, 2021, 9(19): 6308-6315. |
[37] | Gao P, Pan Z K, Ru Q, Zhang J, Zheng M H, Zhao X, Ling F C C, Wei L. Synergetic V2O5·3H2O/metallic VS2 nanocomposites endow a long life and high rate capability to aqueous zinc-ion batteries[J]. Energy Fuel., 2022, 36(6): 3319-3327. |
[38] | Yang M Y, Wang Z F, Ben H Y, Zhao M X, Luo J X, Chen D Z, Lu Z G, Wang L, Liu C. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy[J]. J. Colloid. Interface Sci., 2022, 607: 68-75. |
[39] | Cao Z Y, Chu H, Zhang H, Ge Y C, Clemente R, Dong P, Wang L P, Shen J F, Ye M X, Ajayan P M. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7·H2O with enhanced zinc storage properties[J]. J. Mater. Chem. A, 2019, 7(44): 25262-25267. |
[40] | Wang J J, Wang J G, Liu H Y, You Z Y, Wei C G, Kang F Y. Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries[J]. J. Power Sources, 2019, 438: 226951. |
[41] | Ding J W, Gao H G, Zhao K, Zheng H Y, Zhang H, Han L F, Wang S W, Wu S D, Fang S M, Cheng F Y. In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range[J]. J. Power Sources, 2021, 487: 229369. |
[42] | Ding J W, Du Z G, Li B, Wang L Z, Wang S W, Gong Y J, Yang S B. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries[J]. Adv. Mater., 2019, 31(44): 1904369. |
[43] | Yin B S, Zhang S W, Xiong T, Shi W, Ke K, Lee W S V, Xue J M, Wang Z B. Engineering sulphur vacancy in VS2 as high performing zinc-ion batteries with high cyclic stability[J]. New J Chem., 2020, 44(37): 15951-15957. |
[44] | Qin H G, Yang Z H, Chen L L, Chen X, Wang L M. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite[J]. J. Mater. Chem. A, 2018, 6(46): 23757-23765. |
[45] | Liu S N, Chen X X, Zhang Q, Zhou J, Cai Z Y, Pan A Q. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries[J]. ACS Appl. Mater. Inter., 2019, 11(40): 36676-36684. |
[46] | Gao S Z, Ju P, Liu Z Q, Zhai L, Liu W B, Zhang X Y, Zhou Y L, Dong C F, Jiang F Y, Sun J C. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries[J]. J. Energy Chem., 2022, 69: 356-362. |
[47] | Samanta P, Ghosh S, Jang W, Yang C M, Murmu N C, Kuila T. A reversible anodizing strategy in a hybrid electrolyte Zn-ion battery through structural modification of a vanadium sulfide cathode[J]. ACS Appl. Energ. Mater., 2021, 4(10): 10656-10667. |
[48] | Wang L L, Wu Z X, Jiang M J H, Lu J Y, Huang Q H, Zhang Y, Fu L J, Wu M, Wu Y P. Layered VSe2: A promising host for fast zinc storage and its working mechanism[J]. J. Mater. Chem. A, 2020, 8(18): 9313-9321. |
[49] | Wu Z Y, Lu C J, Wang Y N, Zhang L, Jiang L, Tian W C, Cai C L, Gu Q F, Sun Z M, Hu L F. Ultrathin VSe2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode[J]. Small, 2020, 16(35): 2000698. |
[50] | Bai Y C, Zhang H, Xiang B, Liang X Y, Hao J Y, Zhu C, Yan L J. Selenium defect boosted electrochemical performance of binder-free VSe2 nanosheets for aqueous zinc-ion batteries[J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 23230-23238. |
[51] | Cai S N, Wu Y K, Chen H, Ma Y D, Fan T X, Xu M W, Bao S J. Why does the capacity of vanadium selenide based aqueous zinc ion batteries continue to increase during long cycles?[J]. J. Colloid. Interface Sci., 2022, 615: 30-37. |
[52] | Fechler N, Tiruye G A, Marcilla R, Antonietti M. Vanadium nitride@N-doped carbon nanocomposites: Tuning of pore structure and particle size through salt templating and its influence on supercapacitance in ionic liquid media[J]. RSC Adv., 2014, 4(51): 26981-26989. |
[53] |
Yuan J, Hu X, Chen J X, Liu Y J, Huang T Z, Wen Z H. In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage[J]. J. Mater. Chem. A, 2019, 7(15): 9289-9296.
doi: 10.1039/c8ta12512k |
[54] | Ou L N, Liu Z X, Zhou Y F, Ou H H, Zhu J, Cao X X, Fang G Z, Zhou J, Liang S Q. Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous vanadyl phosphate[J]. Chem. Eng. J., 2021, 426: 131868. |
[55] | Chen D, Lu M J, Wang B R, Chai R Q, Li L, Cai D, Yang H, Liu B K, Zhang Y P, Han W. Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: Cationic conversion reaction works[J]. Energy Storage Mater., 2021, 35: 679-686. |
[56] | Peng Y Y, Yu M M, Zhao L, Ji X W, He T Q, Liu Y, Wang Q, Ran F. 3D layered nanostructure of vanadium nitrides quantum dots@graphene anode materials via in-situ redox reaction strategy[J]. Chem. Eng. J., 2021, 417: 129267. |
[57] |
Niu Y, Xu W Q, Ma Y J, Gao Y, Li X L, Li L D, Zhi L J. Layer-by-layer stacked vanadium nitride nanocrystals/N-doped carbon hybrid nanosheets toward high-performance aqueous zinc-ion batteries[J]. Nanoscale, 2022, 14(20): 7607-7612.
doi: 10.1039/d2nr00983h pmid: 35543557 |
[58] | Fang G Z, Liang S Q, Chen Z X, Cui P X, Zheng X S, Pan A Q, Lu B G, Lu X H, Zhou J. Simultaneous cationic and anionic redox reactions mechanism enabling high-rate long-life aqueous zinc-ion battery[J]. Adv. Funct. Mater., 2019, 29(44): 1905267. |
[59] | Du W Y, Miao L, Song Z Y, Zheng X W, Lv Y K, Zhu D Z, Gan L H, Liu M X. Kinetics-driven design of 3D VN/Mxene composite structure for superior zinc storage and charge transfer[J]. J. Power Sources, 2022, 536: 231512. |
[60] | Park J S, Wang S E, Jung D S, Lee J K, Kang Y C. Nano-confined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries[J]. Chem. Eng. J., 2022, 446: 137266. |
[61] | Chen H Z, Yang Z H, Wu J, Rong Y, Deng L. Industrial VN@reduced graphene oxide cathode for aqueous zinc ion batteries with high rate capability and long cycle stability[J]. J. Power Sources, 2021, 507: 230286. |
[62] | Li X L, Ma L T, Zhao Y W, Yang Q, Wang D H, Huang Z D, Liang G J, Mo F N, Liu Z X, Zhi C Y. Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery[J]. Mater. Today Energy, 2019, 14: 100361. |
[63] | Javed M S, Lei H, Wang Z L, Liu B T, Cai X, Mai W J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries[J]. Nano Energy, 2020, 70: 104573. |
[64] | Yao Z G, Wu Q P, Chen K Y, Liu J J, Li C L. Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage via a cascading effect[J]. Energy Environ. Sci., 2020, 13(9): 3149-3163. |
[65] | Li X L, Li M, Yang Q, Liang G J, Huang Z D, Ma L T, Wang D H, Mo F N, Dong B B, Huang Q, Zhi C Y. In situ electrochemical synthesis of mxenes without acid/alkali usage in/for an aqueous zinc ion battery[J]. Adv. Energy Mater., 2020, 10(36): 2001791. |
[66] | Venkatkarthick R, Rodthongkum N, Zhang X Y, Wang S M, Pattananuwat P, Zhao Y S, Liu R P, Qin J Q. Vanadium-based oxide on two-dimensional vanadium carbide mxene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries[J]. ACS Appl. Energy Mater., 2020, 3(5): 4677-4689. |
[67] | Chen J, Xiao B Q, Hu C F, Chen H D, Huang J J, Yan D, Peng S L. Construction strategy of VO2@V2C 1D/2D heterostructure and improvement of zinc-ion diffusion ability in VO2(B)[J]. ACS Appl. Mater. Inter., 2022, 14(25): 28760-28768. |
[68] | Sha D W, Lu C J, He W, Ding J X, Zhang H, Bao Z H, Cao X, Fan J C, Dou Y, Pan L, Sun Z M. Surface selenization strategy for V2CTx Mxene toward superior Zn-ion storage[J]. ACS Nano, 2022, 16(2): 2711-2720. |
[69] | Wang J, Wang L, Yang S B. VN Quantum dots anchored uniformly onto nitrogen-doped graphene as efficient electrocatalysts for oxygen reduction reaction[J]. Nano, 2018, 13(4): 1850041. |
[70] | Pu X M, Song T B, Tang L B, Tao Y Y, Cao T, Xu Q J, Liu H M, Wang Y G, Xia Y Y. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries[J]. J. Power Sour-ces, 2019, 437: 226917. |
[71] | Ding J W, Gao H G, Liu W Q, Wang S W, Wu S D, Fang S M, Cheng F Y. Operando constructing vanadium tetrasulfide-based heterostructures enabled by extrinsic adsorbed oxygen for enhanced zinc ion storage[J]. J. Mater. Chem. A, 2021, 9(18): 11433-11441. |
[72] | Liu J Y, Long J W, Shen Z H, Jin X, Han T L, Si T, Zhang H G. A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes[J]. Adv. Sci., 2021, 8(8): 2004689. |
[73] | Xu J, Liu Y B, Chen P L, Wang A, Huang K J, Fang L X, Wu X. Interlayer-expanded VS2 nanosheet: Fast ion transport, dynamic mechanism and application in Zn2+ and Mg2+/Li+ hybrid batteries systems[J]. J. Colloid. Interface Sci., 2022, 620: 119-126. |
[74] | Rong Y, Chen H Z, Wu J, Yang Z H, Deng L, Fu Z M. Granular vanadium nitride (VN) cathode for high-capacity and stable zinc-ion batteries[J]. Ind. Eng. Chem. Res., 2021, 60(24): 8649-8658. |
[75] | Su Q S, Rong Y, Chen H Z, Wu J, Yang Z H, Deng L, Fu Z M. Carbon-doped vanadium nitride used as a cathode of high-performance aqueous zinc ion batteries[J]. Ind. Eng. Chem. Res., 2021, 60(33): 12155-12165. |
[76] | Chen H Z, Yang Z H, Wu J. Vanadium nitride@nitrogen-doped graphene as zinc ion battery cathode with high rate capability and long cycle stability[J]. Ind. Eng. Chem. Res., 2022, 61(8): 2955-2962. |
[77] | Narayanasamy M, Kirubasankar B, Shi M J, Velayutham S, Wang B, Angaiah S, Yan C. Morphology restrained growth of V2O5 by the oxidation of V-Mxenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries[J]. Chem. Commun., 2020, 56(47): 6412-6415. |
[78] | Rastgoo-Deylami M, Esfandiar A. High energy aqueous rechargeable nickel-zinc battery employing hierarchical NiV-LDH nanosheet-built microspheres on reduced graphene oxide[J]. ACS Appl. Energy Mater., 2021, 4(3): 2377-2387. |
[79] | Liu Y, Jiang Y, Hu Z, Peng J, Lai W H, Wu D L, Zuo S W, Zhang J, Chen B, Dai Z W, Yang Y G, Huang Y, Zhang W, Zhao W, Zhang W, Wang L, Chou S L. In-situ electrochemically activated surface vanadium valence in V2C mxene to achieve high capacity and superior rate performance for Zn-ion batteries[J]. Adv. Funct. Mater., 2020, 31(8): 2008033. |
[80] | Zhu X D, Cao Z Y, Wang W J, Li H J, Dong J C, Gao S P, Xu D X, Li L, Shen J F, Ye M X. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx Mxene[J]. ACS Nano, 2021, 15(2): 2971-2983. |
[81] | Karapidakis E, Vernardou D. Progress on V2O5 cathodes for multivalent aqueous batteries[J]. Mater., 2021, 14(9), 2310. |
[82] | Lewis C E M, Fernando J F S, Siriwardena D P, Firestein K L, Zhang C, von Treifeldt J E, Golberg D V. Vanadium-containing layered materials as high-performance cathodes for aqueous zinc-ion batteries[J]. Adv. Mater. Technol., 2021, 7(4): 2100505. |
[83] | Liu Y, Wu X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries[J]. J. Energy Chem., 2021, 56: 223-237. |
[84] | Shi Y C, Chen Y, Shi L, Wang K, Wang B, Li L, Ma Y M, Li Y H, Sun Z H, Ali W, Ding S J. An overview and future perspectives of rechargeable zinc batteries[J]. Small, 2020, 16(23): 2000730. |
[85] | Zhang W W, Zuo C L, Tang C, Tang W, Lan B X, Fu X D, Dong S J, Luo P. The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries[J]. Energy Technol., 2020, 9(2): 2000789. |
[86] | Sui D, Wu M N, Shi K Y, Li C L, Lang J W, Yang Y L, Zhang X Y, Yan X B, Chen Y S. Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond[J]. Carbon, 2021, 185: 126-151. |
[87] |
Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628 pmid: 32786670 |
[88] | Liu Z X, Sun H M, Qin L P, Cao X X, Zhou J, Pan A Q, Fang G Z, Liang S Q. Interlayer doping in layered vanadium oxides for low-cost energy storage: Sodium-ion batteries and aqueous zinc-ion batteries[J]. ChemNano-Mat, 2020, 6(11): 1553-1566. |
[89] | Xu X M, Xiong F Y, Meng J S, Wang X P, Niu C J, An Q Y, Mai L Q. Vanadium-based nanomaterials: A pro-mising family for emerging metal-ion batteries[J]. Adv. Funct. Mater., 2020, 30(10): 1904398. |
[90] | Fu Q, Wang J Q, Sarapulova A, Zhu L H, Missyul A, Welter E, Luo X L, Ding Z M, Knapp M, Ehrenberg H, Dsoke S. Electrochemical performance and reaction mechanism investigation of V2O5 positive electrode material for aqueous rechargeable zinc batteries[J]. J. Mater. Chem. A, 2021, 9(31): 16776-16786. |
[91] | Fan L, Ru Y, Xue H G, Pang H, Xu Q. Vanadium-based materials as positive electrode for aqueous zinc-ion batteries[J]. Adv. Sustain. Syst., 2020, 4(12): 2000178. |
[92] | Bensalah N, De Luna Y. Recent progress in layered manganese and vanadium oxide cathodes for Zn-ion batteries[J]. Energy Technol., 2021, 9(5): 2100011. |
[93] |
Zhao J, Ren H, Liang Q H, Yuan D, Xi S B, Wu C, Manalastas W, Ma J M, Fang W, Zheng Y, Du C F, Srinivasan M, Yan Q Y. High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode[J]. Nano Energy, 2019, 62: 94-102.
doi: 10.1016/j.nanoen.2019.05.010 |
[94] | Wang X W, Wang L Q, Zhang B, Feng J M, Zhang J F, Ou X, Hou F, Liang J. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries[J]. J. Energy Chem., 2021, 59: 126-133. |
[95] | Alfaruqi M H, Mathew V, Song J J, Kim S, Islam S, Pham D T, Jo J, Kim S, Baboo J P, Xiu Z, Lee K S, Sun Y K, Kim J. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode[J]. Chem. Mater., 2017, 29(4): 1684-1694. |
[96] | He P, Yan M Y, Liao X B, Luo Y Z, Mai L Q, Nan C W. Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage[J]. Energy Storage Mater., 2020, 29: 113-120. |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[3] | 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学(中英文), 2021, 27(2): 177-184. |
[4] | 吴凯. Na3V2(PO4)2O2F的合成及其在钠离子电池中的应用[J]. 电化学(中英文), 2021, 27(1): 56-62. |
[5] | 孙梦雷, 张达奇, 冯金奎, 倪江锋. 钒基电极材料研究进展[J]. 电化学(中英文), 2019, 25(1): 45-54. |
[6] | 何大平,木士春. 质子交换膜燃料电池铂电催化剂稳定策略[J]. 电化学(中英文), 2018, 24(6): 655-663. |
[7] | 王鸿辉,马明洁,冯婕,康黄雅,黄文杰. 钕掺杂二氧化铅复合阳极的电化学性能研究[J]. 电化学(中英文), 2018, 24(4): 367-374. |
[8] | 张伶潇,赵惠慧,张丽娟,付予. Ag-TiO2-MnO2复合材料的制备与电化学性能研究[J]. 电化学(中英文), 2018, 24(3): 292-299. |
[9] | 李全一,杨琪,赵艳红. 二氧化钼-碳复合涂层的电化学性能研究[J]. 电化学(中英文), 2018, 24(2): 160-165. |
[10] | 王友,曾一文,钟星,刘星,汤泉. 锂离子电池负极材料Li3V2(BO3)3/C 复合材料的合成及电化学性能研究[J]. 电化学(中英文), 2018, 24(2): 174-181. |
[11] | 刘兴亮,杨茂萍,汪伟伟, 曹勇. 分级过程对LiFePO4/C电池性能的影响[J]. 电化学(中英文), 2017, 23(6): 661-666. |
[12] | 罗化峰,乔元栋. 纤维素微孔锂电隔膜的制备及性能研究[J]. 电化学(中英文), 2017, 23(5): 610-616. |
[13] | 孙现众, 张熊, 王凯, 马衍伟. 高能量密度的锂离子混合型电容器[J]. 电化学(中英文), 2017, 23(5): 586-603. |
[14] | 程琥, 聂晓燕, 申叶丹, . 哌啶型离子液体混合电解液在Li/LiCoO2电池中的性能研究[J]. 电化学(中英文), 2017, 23(1): 59-63. |
[15] | 杨亚雄,马瑞军,高明霞,潘洪革,刘永锋. 晶态Li12Si7锂离子电池负极材料的电化学性能研究[J]. 电化学(中英文), 2016, 22(5): 521-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||