电化学(中英文) ›› 2021, Vol. 27 ›› Issue (5): 518-528. doi: 10.13208/j.electrochem.200821
收稿日期:
2020-08-24
修回日期:
2020-10-16
出版日期:
2021-10-28
发布日期:
2020-11-10
通讯作者:
程蕾
E-mail:chenglei@gxnu.edu.cn
基金资助:
Lei Cheng*(), Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang
Received:
2020-08-24
Revised:
2020-10-16
Published:
2021-10-28
Online:
2020-11-10
Contact:
Lei Cheng
E-mail:chenglei@gxnu.edu.cn
摘要:
玻碳电极(GCE)是各类电化学传感器常用的基础电极,其界面特征直接影响检测性能。本文详细考察了电极体系的电化学过程,针对GCE传感界面,探讨了一个等效电路中电解质电阻、电荷输运电阻、扩散阻抗、电化学(氧化/还原)反应阻抗、表面吸附阻抗和双电层电容等电学元件的物理意义,并给出了对应的数学模型。通过改变模型中5个参数值,模拟了不同状态下的阻抗谱,分析了电极系统各参数对GCE阻抗谱的贡献规律。最后,采用该数学模型对裸GCE和修饰GCE在铁氰化钾溶液中的阻抗谱进行分析,拟合结果与实验数据吻合度高;基于拟合获得参数,定量对比分析了修饰前后电极表面的特征变化。
程蕾, 闫普选, 樊友军, 邹华红, 梁宏. 玻碳电极界面的阻抗谱数学表达及定量分析[J]. 电化学(中英文), 2021, 27(5): 518-528.
Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang. Mathematical Expression and Quantitative Analysis of Impedance Spectrum on the Interface of Glassy Carbon Electrode[J]. Journal of Electrochemistry, 2021, 27(5): 518-528.
[1] |
Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Anal. Chem., 2015, 87(1): 230-249.
doi: 10.1021/ac5039863 URL |
[2] |
Couper A M, Pletcher D, Walsh F C. Electrode materials for electrosynjournal[J]. Chem. Rev., 1990, 90(5): 837-865.
doi: 10.1021/cr00103a010 URL |
[3] |
Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Anal. Chem., 2015, 87(1): 230-249.
doi: 10.1021/ac5039863 URL |
[4] |
Zhuang J Y, Fu L B, Xu M D, Yang H H, Chen G N, Tang D P. Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction[J]. Anal. Chim. Acta, 2013, 783: 17-23.
doi: 10.1016/j.aca.2013.04.049 URL |
[5] |
Ulubay S, Dursun Z. Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid[J]. Talanta, 2010, 80(3): 1461-1466.
doi: 10.1016/j.talanta.2009.09.054 URL |
[6] |
Alwarappan S, Liu G, Li C Z. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors[J]. Nanomed. -Nanotechnol., 2010, 6(1): 52-57.
doi: 10.1016/j.nano.2009.06.003 URL |
[7] |
Zhu X H, Liang Y, Zuo X X, Hu R P, Xiao X, Nan J M. Novel water-soluble multi-nanopore graphene modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid[J]. Electrochim. Acta, 2014, 143: 366-373.
doi: 10.1016/j.electacta.2014.08.044 URL |
[8] |
Aldana-González J, Palomar-Pardavé M, Corona-Avendaño S, de Oca MGM, Ramirez-Silva M T, Romero-Romo M. Gold nanoparticles modified-ITO electrode for the selective electrochemical quantification of dopamine in the presence of uric and ascorbic acids[J]. J. Electroanal. Chem., 2013, 706: 69-75.
doi: 10.1016/j.jelechem.2013.07.037 URL |
[9] |
Li M J, Guo W L, Li H J, Dai W, Yang B H. Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid[J]. Sensor Actuat. B - Chem., 2014, 204: 629-636.
doi: 10.1016/j.snb.2014.08.022 URL |
[10] |
Babaei A, Taheri A R. Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid[J]. Sensor Actuat. B - Chem., 2013, 176: 543-551.
doi: 10.1016/j.snb.2012.09.021 URL |
[11] |
Yang S L, Li G, Yin Y L, Yang R, Li J J, Qu L B. Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine[J]. J. Electroanal. Chem., 2013, 703: 45-51.
doi: 10.1016/j.jelechem.2013.04.020 URL |
[12] | Cheng L, Fan Y J, Shen X C, Liang H. Highly sensitive detection of dopamine at ionic liquid functionalized RGO/ZIF-8 nanocomposite-modified electrode[J]. J. Nano-mater., 2019: 8936095. |
[13] |
Zhang Z J, Huang J, Wu X Z, Zhang W Z, Chen S Y. Im-pedance study of the electrochemical reduction of adreno-chrome on glassy carbon[J]. J. Electroanal. Chem., 1998, 444(2): 169-172.
doi: 10.1016/S0022-0728(97)00576-7 URL |
[14] | Fang Y H(方亚辉), Liu Z P(刘智攀). Insight into the important solid/liquid double layer from first-principles calculations[J]. J. Electrochem.(电化学), 2020, 26(1): 32-40. |
[15] | Shi M L(史美伦). Principle and application of AC impe-dance spectroscopy[M]. Beijing: National Defence Industrial Press(国防工业出版社), 2001. |
[16] |
Wang B, Jing R, Qi H L, Gao Q, Zhang C X. Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode[J]. J. Electroanal. Chem., 2016, 781: 212-217.
doi: 10.1016/j.jelechem.2016.08.005 URL |
[17] | Zhang J Q(张鉴清). Electrochemical measurement technology[M]. Beijing: Chemical Industry Press(化学工业出版社), 2010. |
[18] |
Oliveiraa M, Correiab M, Diniza F. Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor[J]. Biosens. Bioelectron., 2009, 25(4): 728-732.
doi: 10.1016/j.bios.2009.08.009 pmid: 19747814 |
[19] |
Li B L, Wang Y L, Wei H, Dong S J. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model[J]. Biosens. Bioelectron., 2008, 23(7): 965-970.
doi: 10.1016/j.bios.2007.09.019 URL |
[20] |
Diakowski P M, Xiao Y Z, Petryk M W P, Kraatz H B. Impedance based detection of chemical warfare agent mimics using ferrocene-lysine modified carbon nanotubes[J]. Anal. Chem., 2010, 82(8): 3191-3197.
doi: 10.1021/ac902694d pmid: 20329758 |
[21] |
Reybier K, Ribaut C, Coste A, Launay J, Fabre P L, Ne-pveu F. Characterization of oxidative stress in leishmaniasis-infected or LPS-stimulated macrophages using electrochemical impedance spectroscopy[J]. Biosens. Bioelectron., 2010, 25(12): 2566-2572.
doi: 10.1016/j.bios.2010.04.021 pmid: 20488689 |
[22] |
Heiduschka P, Dittrich J. Impedance spectroscopy and cyclic voltammetry at bare and polymer coated glassy carbon electrodes[J]. Electrochim. Acta, 1992, 37(14): 2573-2580.
doi: 10.1016/0013-4686(92)87054-4 URL |
[23] | MacDonald D. Transient techniques in electrochemistry[M]. New York: Plenum Press, 1977. |
[24] | MacDonald J R. Impedance spectroscopy-emphasizing solid materials and systems[M]. New York: Wiley-Interscience, 1987. |
[25] |
Košicek K M, Kvastek K, Horvat-Radoševic V. Different charge storage mechanisms at some carbon electrodes in redox active electrolyte revealed by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2016, 195: 77-84.
doi: 10.1016/j.electacta.2016.02.140 URL |
[26] |
Rodrigues D R, Olivieri A C, Fragoso W D, Lemos S G. Complex numbers-partial least-squares applied to the treatment of electrochemical impedance spectroscopy data[J]. Anal. Chim. Acta, 2019, 1080: 1-11.
doi: S0003-2670(19)30869-4 pmid: 31409458 |
[1] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[2] | 张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学(中英文), 2022, 28(2): 2108471-. |
[3] | 李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学(中英文), 2021, 27(5): 467-497. |
[4] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
[5] | 马洪运, 姚晓辉, 妙孟姚, 易阳, 伍绍中, 周江. 高镍正极材料(LiNi0.83Co0.12Mn0.05O2)45°C循环失效机理研究[J]. 电化学(中英文), 2020, 26(3): 431-440. |
[6] | 邹振文, 郑大江, 王子明, 宋光铃. 新型单丝电极交流探头在3.5wt.% NaCl中的电化学响应规律研究[J]. 电化学(中英文), 2020, 26(3): 317-327. |
[7] | 李伟恒, 黄秋安, 杨维明, 杨昌平, 张久俊. 基于伪随机二进制序列的阻抗谱快速重构及其在电化学能源领域的应用[J]. 电化学(中英文), 2020, 26(3): 370-388. |
[8] | 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学(中英文), 2020, 26(1): 3-18. |
[9] | 郭建伟,王建龙. 电化学阻抗谱在质子交换膜燃料电池动态的先导应用[J]. 电化学(中英文), 2018, 24(6): 687-696. |
[10] | 廖群,张曙枫,冷文华. 铁电极电还原溴化钠甲醇溶液反应动力学和机理[J]. 电化学(中英文), 2017, 23(6): 645-653. |
[11] | Hisham Hamzah,Guy Denuault,Philip Bartlett,Aleksandra Pinczewska,Jeremy Kilburn. 乙腈/碳酸氢钠溶液混合物电嫁接叔丁氧羟基-乙二胺[J]. 电化学(中英文), 2017, 23(2): 130-140. |
[12] | 史坤明,郭建伟,王佳. Pt/C催化剂氧还原反应的交流阻抗动态研究[J]. 电化学(中英文), 2016, 22(5): 542-548. |
[13] | 杨 星,陈 平*. 对磺酸基苯偶氮杯[4]芳烃电化学行为研究[J]. 电化学(中英文), 2016, 22(1): 37-42. |
[14] | 侯瑞青,蒋平丽,董士刚,林昌健*. 镁钙合金表面贻贝类吸附蛋白膜的NaIO4氧化处理及抗腐蚀性能[J]. 电化学(中英文), 2015, 21(1): 58-65. |
[15] | 吕尧,黄波*,顾习之,候春一,胡一星,王晓颖,朱新坚. 固体氧化物燃料电池Cu-LSCM-CeO2/LSCM-YSZ/Ni-ScSZ复合阳极制备及性能[J]. 电化学(中英文), 2014, 20(5): 470-475. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||