[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.[2] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.[3] Kim S W, Seo D H, Ma X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.[4] Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901.[5] Tahil W. The trouble with lithium Implications of Future PHEV Production for Lithium Demand[R]. Meridian International Research, 2007.[6] Tarascon J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510-510.[7] Delmas C, Braconnier J J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3/4: 165-169.[8] Shacklette L, Jow TTownsend L. Rechargeable electrodes from sodium cobalt bronzes[J]. Journal of The Electrochemical Society, 1988, 135(11): 2669-2674.[9] Carlier D, Cheng J H, Berthelot R, et al. The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery[J]. Dalton Transactions, 2011, 40(36): 9306-9312.[10] Cao Y, Xiao L, Wang W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials, 2011, 23(28): 3155-3160.[11] Mendiboure A, Delmas C, Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57(3): 323-331.[12] Caballero A, Hernan L, Morales J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147.[13] Paulsen J M, Dahn J R. Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M=Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange[J]. Solid State Ionics, 1999, 126(1/2): 3-24.[14] Kim D, Kang S H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials, 2011, 1(3): 333-336.[15] Hamani D, Ati M, Tarascon J M, et al. NaxVO2 as possible electrode for Na-ion batteries[J]. Electrochemistry Communications, 2011, 13(9): 938-941.[16] Liu H, Zhou H, Chen L, et al. Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries[J]. Journal of Power Sources, 2011, 196(2): 814-819.[17] Bridson J N, Quinlan S E, Tremaine P R. Synthesis and crystal structure of maricite and sodium iron(III) hydroxyphosphate[J]. Chemistry of Materials, 1998, 10(3): 763-768.[18] Lee K T, Ramesh T N, Nan F, et al. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries[J]. Chemistry of Materials, 2011, 23(16): 3593-3600.[19] Recham N, Chotard J N, Dupont L, et al. Ionothermal synthesis of sodium-based fluorophosphate cathode materials[J]. Journal of The Electrochemical Society, 2009, 156(12): A993-A999.[20] Barker J, Saidi M, Swoyer J A. sodium-ion cell based on the fluorophosphate compound NaVPO4F[J]. Electrochemical and solid-state letters, 2003, 6(1): A1-A4.[21] Qian J F, Zhou M, Cao Y L, et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2012, 2(4): 410-414.[22] Qian J(钱江锋), Zhou M(周敏), Cao Y(曹余良), et al. NaxMyFe(CN)6(M=Fe, Co, Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 108-112.[23] Alcantara R, Madrigal F J F, Lavela P, et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J]. Carbon, 2000, 38(7): 1031-1041.[24] Thomas P, Billaud D Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J]. Electrochimica Acta, 2000, 46(1): 39-47.[25] Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345.[26] Alcantara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and solid-state letters, 2005, 8(4): A222-A225.[27] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1271-1273.[28] Chevrier V L, Ceder G. Challenges for Na-ion negative electrodes[J]. Journal of The Electrochemical Society, 2011, 158(9): A1011-A1014.[29] Qian J, Chen Y, Wu L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48(56): 7070-7072.[30] Qian J F, Wu X Y, Cao Y, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.[31] Li Z, Young D, Xiang K, et al. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3(3): 290-294.[32] Wu X Y, Cao Y L, Ai X P, et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6[J]. Electrochemistry Communications, 2013, 31: 145-148. |