金属-有机框架(MOF)纳米材料因其独特性质显著促进了电化学传感器的发展。合理设计双金属MOF并集成与微电极对于提高电化学性能至关重要,但仍然面临巨大挑战。本工作中通过原位电沉积方法将双金属FeCo-MOF纳米材料组装于金超微电极(Au UME,直径约为5.2 µm)表面,并应用于肾上腺素(EP)的电化学检测。FeCo-MOF呈现类纳米花结构,均匀分散在超微电极基底上。FeCo-MOF/Au UME在EP检测中表现出较好的电化学性能,具有高灵敏度36.93 μA·μmol-1·L·cm-2和低检测限1.28 μmol·L-1。这可归因于EP在超微电极基底的非线性快速传质特点,以及基于MOF结构中Fe、Co双金属的协同催化效应。此外,我们将FeCo-MOF/Au UME成功应用于人血清样本中EP的检测,且表现出较高回收率。本研究工作不仅有助于扩展电化学传感器研究领域,还将为设计开发基于MOF纳米敏感材料的微纳电化学传感器件提供指导和借鉴。
多巴胺(Dopamine,DA)是一种重要的神经递质,其准确检测对临床诊断和神经科学研究至关重要。由于多巴胺具有电化学活性,常通过电化学方法进行检测,电化学方法因其操作简便、响应迅速、适用于在体分析而备受关注。本文本研究采用HAuCl4还原的方法在二硫化钼纳米片上修饰金纳米颗粒制备了Au@MoS2复合材料,旨在构建一种高灵敏度的多巴胺电化学传感器,以增强DA吸附,从而提升检测多巴胺的性能。SEM、TEM、EDS、XPS、XRD证实了Au@MoS2的成功合成,并且金纳米颗粒均匀分布在MoS2纳米片表面。电化学表征结果表明,Au@MoS2/GCE在10 μmol·L-1 DA溶液中表现出明显的氧化峰,且电化学活性显著优于未修饰的GCE和纯MoS2。DPV结果表明,Au@MoS2/GCE在800 nmol·L-1至10 μmol·L-1范围内对DA呈现良好的线性关系,检出限(LOD)低至78.9 nmol·L-1(S/N=3),并且对其他共存干扰物质具有优良的选择性。此外,在Au@MoS2表面进行激光诱导产生带有表面带有大量负电荷缺陷的LIAu@MoS2,,实现了对低浓度DA的超灵敏检测。此外,激光诱导的Au@MoS2(LIAu@MoS2)由于表面富含大量带负电荷的缺陷,能够实现对低浓度DA的超灵敏检测。综上所述,本文成功制备了Au@MoS2复合材料,并构建高灵敏度的多巴胺电化学传感器。该传感器具有成本低廉、操作简单和易于量产的特点,显著提升了对DA的传感性能,在生物传感领域具有潜在的应用前景。