| [1] |
Zhang L Q, Zhu C X, Yu S C, Ge D H, Zhou H S. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. J. Energy Chem., 2022, 66: 260-294. https://doi.org/10.1016/j.jechem.2021.08.001.
doi: 10.1016/j.jechem.2021.08.001
URL
|
| [2] |
Goodenough J B. Energy storage materials: a perspective[J]. Energy Storage Mater., 2015, 1: 158-161. https://doi.org/10.1016/j.ensm.2015.07.001.
|
| [3] |
O'Heir J. Building Better Batteries[J]. Mech. Eng., 2017, 139(1): 10-11. https://www.asme.org/topics-resources/content/building-better-batteries.
|
| [4] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. https://doi.org/10.1126/science.1212741.
doi: 10.1126/science.1212741
URL
pmid: 22096188
|
| [5] |
Kim J H, Woo S C, Park M S, Kin K J, Yim T, Kim J S. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage[J]. J. Power Sources, 2013, 229: 190-197. https://doi.org/10.1016/j.jpowsour.2012.12.024.
doi: 10.1016/j.jpowsour.2012.12.024
URL
|
| [6] |
Tasaki K, Goldberg A, Lian J J, Walker M, Timmons A, Harris S J. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents[J]. J. Electrochem. Soc., 2009, 156(12): A1019-A1027. https://doi.org/10.1149/1.3239850.
|
| [7] |
Ding L, Bagul P, Cui L, Oswald S, Pohle B, Leones R, Mikhailova D. Graphite anode functionalized with a gel biopolymer binder for Li-ion batteries operating in a broad temperature range[J]. ACS Appl. Energy Mater., 2023, 6(8): 4404-4412. https://doi.org/10.1021/acsaem.3c00512.
doi: 10.1021/acsaem.3c00512
URL
|
| [8] |
Sharifi H, Mosallanejad B, Mohammadzad M, Hosseini-Hosseinabad S M, Ramarkrishna S. Cycling Performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques[J]. Ionics, 2021, 28(1): 213-228. https://doi.org/10.1007/s11581-021-04258-9.
doi: 10.1007/s11581-021-04258-9
URL
|
| [9] |
Dubarry M, Liaw B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. J. Power Sources, 2009, 194(1): 541-549. https://doi.org/10.1016/j.jpowsour.2009.05.036.
doi: 10.1016/j.jpowsour.2009.05.036
URL
|
| [10] |
Tan L, Zhang L, Sun Q N, Shen M, Qu Q T, Zheng H H. Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures[J]. Electrochimica Acta, 2013, 111: 802-808. https://doi.org/10.1016/j.electacta.2013.08.074.
doi: 10.1016/j.electacta.2013.08.074
URL
|
| [11] |
Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an automotive LiFePO4lithium-ion battery[J]. J. Power Sources, 2011, 196(3): 1513-1520. https://doi.org/10.1016/j.jpowsour.2010.08.070.
doi: 10.1016/j.jpowsour.2010.08.070
URL
|
| [12] |
Wu H C, Su C Y, Shieh D T, Yang M H, Wu N L. Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive[J]. Electrochem. Solid-State Lett., 2006, 9(12): A537-A541. https://doi.org/10.1149/1.2351954.
|
| [13] |
Song H S, Cao Z, Zhang Z A, Lai Y Q, Li J, Liu Y X. Effect of vinylene carbonate as electrolyte additive on cycling performance of LiFePO4/graphite cell at elevated temperature[J]. T. Nonferr. Metal. Soc., 2014, 24(3): 723-728. https://doi.org/10.1016/S1003-6326(14)63117-4.
doi: 10.1016/S1003-6326(14)63117-4
URL
|
| [14] |
Liu Y H, Takeda S, Kaneko I, Yoshitake H, Yanagida M, Saito Y, Sakai T. Formation of thermally resistant films induced by vinylene carbonate additive on a hard carbon anode for lithium ion batteries at elevated temperature[J]. RSC Adv., 2016, 6(79): 75777-75781. https://doi.org/10.1039/C6RA15168J.
doi: 10.1039/C6RA15168J
URL
|
| [15] |
Liao L X, Cheng X Q, Ma Y L, Zuo P J, Fang W, Yin G P, Gao Y Z. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472. https://doi.org/10.1016/j.electacta.2012.09.083.
doi: 10.1016/j.electacta.2012.09.083
URL
|
| [16] |
Wu B R, Ren Y H, Mu D B, Liu X J, Zhao J C, Wu F. Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte[J]. Electrochem. Solid-State Lett., 2012, 17(3): 811-816. https://doi.org/10.1007/s10008-012-1927-9.
|
| [17] |
Ma C X, Qiu Z J, Shan B H, Song Y J, Zheng R M, Feng W T, Cui Y P, Xing W. The optimization of the electrolyte for low temperature LiFePO4-graphite battery[J]. Mater. Lett., 2024, 356, 1335594: 1-4. https://doi.org/10.1016/j.matlet.2023.135594.
|
| [18] |
Madec L, Ma L, Nelson K J, Petibon R, Sun J-P, Hill I G, Dahn J R. The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage Li-ion cells[J]. J. Electrochem. Soc., 2016, 163(6): A1001-A1009. https://doi.org/10.1149/2.1051606jes.
|
| [19] |
Dominko R, Goupil J M, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J. Impact of LiFePO4/C composites porosity on their electrochemical performance[J]. J. Electrochem. Soc., 2005, 152(5): A858-A863. https://doi.org/10.1149/1.1872674.
|
| [20] |
Hu Y G, Liang J D, Chen X X, Chen G K, Peng Y F, Tang S J, He Z F, Li D J, Zhang Z R, Gong Z L, Wei Y M, Yang Y. Comparative study of thermodynamic & kinetic parameters measuring techniques in lithium-ion batteries[J]. J. Power Sources, 2024, 606: 234590-234605. https://doi.org/10.1016/j.jpowsour.2024.234590.
doi: 10.1016/j.jpowsour.2024.234590
URL
|
| [21] |
Qin G X, Zhang J L, Chen H B, Li H, Hu J, Chen Q, Hou G Y, Tang Y P. Lithium difluoro (oxalate) borate as electrolyte additive to form uniform, stable and LiF-rich solid electrolyte interphase for high performance lithium ion batteries[J]. Surf. Interfaces, 2024, 48, 104297: 1-9. https://doi.org/10.1016/j.surfin.2024.104297.
|
| [22] |
Lei Y, Xu X, Yin J Y, Xu Z F, Wei L, Zhu X Q, Pan L N, Jiang S, Gao Y F. Regulating Li-ion solvation structure and electrode-electrolyte interphases via triple-functional electrolyte additive for lithium-metal batteries[J]. Chem. Eng. J., 2024, 497: 154927-154938. https://doi.org/10.1016/j.cej.2024.154927.
doi: 10.1016/j.cej.2024.154927
URL
|
| [23] |
Han F J, Chang Z H, Wang R N, Yun F L, Wang J, Ma C X, Zhang Y, Tang L, Ding H Y, Lu S G. Isocyanate additives improve the low-temperature performance of LiNi0.8Mn0.1Co0.1O2||SiOx@Graphite Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2023, 15(17): 20966-20976. https://doi.org/10.1021/acsami.3c00554.
doi: 10.1021/acsami.3c00554
URL
|