欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (12): 2506131.  doi: 10.61558/2993-074X.3584

• 论文 • 上一篇    下一篇

吡啶添加剂改善磷酸铁锂储能电池循环性能研究

王鹏程a,*(), 李定昌a,b, 李君涛c, 卢光波a,b, 王铈汶a,b,*()   

  1. a厦门海辰储能科技股份有限公司, 福建 厦门 361000
    b厦门市电化学储能材料与安全重点实验室,福建 厦门 361000
    c厦门大学能源学院,福建 厦门 361000
  • 收稿日期:2025-06-12 修回日期:2025-08-11 接受日期:2025-09-12 发布日期:2025-09-12 出版日期:2025-12-28
  • 通讯作者: 王鹏程,王铈汶 E-mail:jason@hithium.com;wsw@hithium.com

A Novel Electrolyte Pyridine Additive for Enhancing Cycle Life of Lithium-ion Batteries

Peng-Cheng Wanga,*(), Ding-Chang Lia,b, Jun-Tao Lic, Guang-Bo Lua,b, Shi-Wen Wanga,b,*()   

  1. aXiamen Hithium Energy Storage Technology Co., Ltd. Xiamen, Fujian, 361000, China
    bXiamen Key Laboratory of Lithium Battery Energy Storage Application Materials and Safety, Xiamen, Fujian, 361000, China
    cCollege of Energy, Xiamen University Xiamen, Fujian, 361000, China
  • Received:2025-06-12 Revised:2025-08-11 Accepted:2025-09-12 Online:2025-09-12 Published:2025-12-28
  • Contact: Peng-Cheng Wang, Shi-Wen Wang E-mail:jason@hithium.com;wsw@hithium.com

摘要:

锂离子电池作为储能行业的新宠,发展迅速。如何匹配光伏协同使用,做到光储同寿是行业的关注焦点之一。为匹配光伏使用寿命,储能电池的循环寿命需要与光伏持平。基于以上需求,本研究针对电池循环寿命提升进行了研究,开发了一种吡啶功能性添加剂。该添加剂优先于碳酸乙烯酯和碳酸亚乙烯酯在负极表面发生还原反应,促使负极界面形成富含氮、氟等元素的固体电解质界面膜,此界面膜能够有效抑制电解液在石墨负极表面的副反应,降低循环过程中活性锂损失,因此,吡啶的加入可以显著提升石墨||磷酸铁锂(Gr||LFP)软包电池的循环性能。同时在100%荷电状态电池高温存储的测试中,含有吡啶的电池容量衰减也有所减缓。另外,对吡啶的用量进行了评估,结果表明,使用含0.5wt% 吡啶电解液的Gr.||LFP软包电池综合性能最优。

关键词: 锂离子电池, 循环性能, 吡啶添加剂, 固体电解质界面

Abstract:

Lithium-ion (Li-ion) battery using a graphite (Gr.) anode and a lithium iron phosphate (LiFePO4, LFP) cathode (Gr.||LFP) has been widespread in energy storage. To match the warranty period of energy storage systems, the lifespan of this kind of Li-ion battery, not only under room temperature but also under relatively high temperature, is critical. Exploration of functional electrolyte additive provides an efficient approach to address this issue. This study reports the usage of pyridine (Py) as a new electrolyte functional additive for Gr.||LFP. In the first cycle, it was found that Py can be reduced before ethylene carbonate and vinylene carbonate, forming a dense and homogeneous solid electrolyte interface (SEI) layer containing rich nitrogen and fluorine elements. Owing to the merits of the SEI layer, the parasitic reactions which occur at the graphite anode and consume the active lithium ion during cycling were suppressed. With the amount of 0.5wt% Py additive in the electrolyte, the Gr.||LFP pouch cell achieved a capacity of 3.2 Ah, exhibiting remarkablly enhanced cycling stability and high-temperature storage capability. Under the experimental conditions of 25 ℃and 0.5 P, the capacity retention of the pouch cell reached 95.64% after 500 cycles, while still maintained 82.75% of the initial capacity after 1000 cycles under 45 °C and 1 P. After the 30-day storage at 45 °C and 60 °C, the capacity retention rates were 87.38% and 80.56%, respectively, which are significantly higher than those of the pouch cells with the blank control electrolyte. This work identifies Py as a highly promising electrolyte additive in stabilizing the graphite-based anode of Li-ion battery under both room temperature and high temperature.

Key words: Lithium-ion batteries, Cyclability, Pyridine additive, Solid electrolyte interface