[1] |
Kang K, Meng Y S, Bréger J, Grey C P, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980.
pmid: 16484487
|
[2] |
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115
URL
|
[3] |
Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K
URL
|
[4] |
Kerman K, Luntz A, Viswanathan V, Chiang Y M, Chen Z. Review—practical challenges hindering the development of solid state Li Ion batteries[J]. J. Electrochem. Soc., 2017, 164(7): A1731-A1744.
doi: 10.1149/2.1571707jes
URL
|
[5] |
Yao X Y, Huang B X, Yin J Y, Peng G, Huang Z, Gao C, Liu D, Xu X X. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science[J]. Chin. Phys. B, 2016, 25(1): 018802.
doi: 10.1088/1674-1056/25/1/018802
URL
|
[6] |
Lv F, Wang Z Y, Shi L Y, Zhu J F, Edström K, Mindemark J, Yuan S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J. Power Sources, 2019, 441: 227175.
doi: 10.1016/j.jpowsour.2019.227175
URL
|
[7] |
Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor[J]. Inorg. Chem., 2016, 55: 2941-2945.
doi: 10.1021/acs.inorgchem.5b02821
URL
|
[8] |
Schwöbel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ion., 2015, 273: 51-54.
doi: 10.1016/j.ssi.2014.10.017
URL
|
[9] |
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686.
doi: 10.1038/nmat3066
pmid: 21804556
|
[10] |
Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B. Li10SnP2S12: An affordable lithium superionic conductor[J]. J. Am. Chem. Soc., 2013, 135(42): 15694-15697.
doi: 10.1021/ja407393y
pmid: 24079534
|
[11] |
Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angew. Chem., Int. Ed., 2008, 47(4): 755-758.
doi: 10.1002/anie.v47:4
URL
|
[12] |
Fenton D E, Parker J M, Wright P V. Wright complexes of alkali-metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589-589.
|
[13] |
Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem., Int. Ed., 2007, 46: 7778-7781.
doi: 10.1002/anie.v46:41
URL
|
[14] |
Samson A J, Hofstetter K, Bag S, Thangadurai V. A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries[J]. Energy Environ. Sci., 2019, 12(10): 2957-2975.
doi: 10.1039/C9EE01548E
URL
|
[15] |
Thangadurai V, Narayana S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chem. Soc. Rev., 2014, 43(13): 4714-4727.
doi: 10.1039/c4cs00020j
pmid: 24681593
|
[16] |
Li S P, Wang H, Cuthbert J, Liu T, Whitacre J F, Matyjaszewski K. A semiliquid lithium metal anode[J]. Joule, 2019, 3(7): 1637-1646.
doi: 10.1016/j.joule.2019.05.022
|
[17] |
Krauskopf T, Hartmann H, Zeier W G, Janek J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Appl. Mater. Interfaces, 2019, 11(15): 14463-14477.
doi: 10.1021/acsami.9b02537
URL
|
[18] |
Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat. Mater., 2019, 18(10): 1105-1111.
doi: 10.1038/s41563-019-0438-9
pmid: 31358941
|
[19] |
Shao Y J, Wang H, Gong Z L, Wang D W, Zheng B Z, Zhu J P, Lu Y X, Hu Y S, Guo X X, Li H, Huang X J, Yang Y, Nan C W, Chen L Q. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Lett., 2018, 3(6): 1212-1218.
doi: 10.1021/acsenergylett.8b00453
URL
|
[20] |
Deng T, Ji X, Zhao Y, Cao L S, Li S, Hwang S, Luo C, Wang P F, Jia H P, Fan X L, Lu X C, Su D, Sun X L, Wang C S, Zhang J G. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Adv. Mater., 2020, 32(23): e2000030.
|
[21] |
Fu J M, Yu P F, Zhang N, Ren G X, Zheng S, Huang W C, Long X H, Li H, Liu X S. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte[J]. Energy Environ. Sci., 2019, 12(4): 1404-1412.
doi: 10.1039/C8EE03390K
URL
|
[22] |
Taylor N J, Stangeland-Molo S, Haslam C G, Sharafi A, Thompson T, Wang M, Garcia-Mendez R, Sakamoto J. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte[J]. J. Power Sources, 2018, 396: 314-318.
doi: 10.1016/j.jpowsour.2018.06.055
URL
|
[23] |
Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61:119-125.
doi: 10.1016/j.nanoen.2019.04.058
URL
|
[24] |
Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat. Energy, 2019, 4(3): 187-196.
|
[25] |
He M H, Cui Z H, Chen C, Li Y Q, Guo X X. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. J. Mater. Chem. A, 2018, 6(24): 11463-11470.
doi: 10.1039/C8TA02276C
URL
|
[26] |
Tang S J, Chen G W, Ren F C, Wang H C, Yang W, Zheng C X, Gong Z L, Yang Y. Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes[J]. J. Mater. Chem. A, 2021, 9(6): 3576-3583.
doi: 10.1039/D0TA11311E
URL
|
[27] |
Li Y Q, Wang Z, Cao Y, Du F M, Chen C, Cui Z H, Guo X X. W-doped Li7La3Zr2O12ceramic electrolytes for solid state Li-ion batteries[J]. Electrochim. Acta, 2015, 180: 37-42.
doi: 10.1016/j.electacta.2015.08.046
URL
|
[28] |
Huo H Y, Gao J, Zhao N, Zhang D X, Holmes N G, Li X N, Sun Y P, Fu J M, Li R Y, Guo X X, Sun X L. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nat. Commun., 2021, 12(1): 176.
doi: 10.1038/s41467-020-20463-y
pmid: 33420065
|