电化学(中英文) ›› 2025, Vol. 31 ›› Issue (10): 2515003. doi: 10.61558/2993-074X.3568
杨诚a, 梁子欣a, 张茗赟a, 陈明哲a,*(
), 张凯b,*(
), 周丽敏a,*(
)
收稿日期:2025-04-26
修回日期:2025-05-23
接受日期:2025-06-16
发布日期:2025-06-19
出版日期:2025-10-28
Yang Chenga, Liang Zi-Xina, Zhang Ming-Yuna, Chen Ming-Zhea,*(
), Zhang Kaib,*(
), Zhou Li-Mina,*(
)
Received:2025-04-26
Revised:2025-05-23
Accepted:2025-06-16
Online:2025-06-19
Published:2025-10-28
Contact:
*Kai Zhang, E-mail: zhangkai_nk@nankai.edu.cn, Ming-Zhe Chen, E-mail: chenmingzhe@njust.edu.cn, Li-Min Zhou, E-mail: lmzhou@njust.edu.cn
摘要:
固态锂电池因其优异的安全性能而成为大规模储能领域的研究热点。与锂金属阳极匹配的高压正极材料的发展使固态锂电池的能量密度接近甚至超过了基于液体电解液的锂电池。然而,在高电压条件下(> 4.3 V),固态电解质组分分解、结构退化和界面副反应会显著降低高压固态电池性能,阻碍其进一步发展。本文综述了高压固态锂电池中无机电解质、聚合物电解质和复合电解质的最新研究进展。同时,详细介绍了高压凝胶固体电解质和高压准固体电解质的设计。此外,界面工程对于提高高压固态电池的整体性能至关重要。最后,我们总结了高压固态锂电池面临的挑战,并对未来的研究方向提出了自己的看法,以期对未来的研究具有指导意义,推动高压固态锂电池的发展。
杨诚, 梁子欣, 张茗赟, 陈明哲, 张凯, 周丽敏. 高压固态锂电池:电解质设计、界面工程和未来前景综述[J]. 电化学(中英文), 2025, 31(10): 2515003.
Yang Cheng, Liang Zi-Xin, Zhang Ming-Yun, Chen Ming-Zhe, Zhang Kai, Zhou Li-Min. High-Voltage Solid-State Lithium Batteries: A Review of Electrolyte Design, Interface Engineering, and Future Perspectives[J]. Journal of Electrochemistry, 2025, 31(10): 2515003.
| [1] | Asadi M, Sayahpour B, Abbasi P, Ngo A T, Karis K, Jokisaari J R, Liu C, Narayanan B, Gerard M, Yasaei P, Hu X, Mukherjee A, Lau K C, Assary R S, Khalili-Araghi F, Klie R F, Curtiss L A, Salehi-Khojin A. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697): 502-506. https://doi.org/10.1038/nature25984. |
| [2] | Degen F, Winter M, Bendig D, Tübke J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells[J]. Nat. Energy, 2023, 8(11): 1284-1295. https://doi.org/10.1038/s41560-023-01355-z. |
| [3] | Liu H D, Zhu Z Y, Yan Q Z, Yu S C, He X, Chen Y, Zhang R, Ma L, Liu T C, Li M, Lin R Q, Chen Y M, Li Y J, Xing X, Choi Y, Gao L, Cho H S Y, An K, Feng J, Kostecki R, Amine K, Wu T P, Lu J, Xin H L, Ong S P, Liu P. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63-67. https://doi.org/10.1038/s41586-020-2637-6. |
| [4] | Wang C Y, Zhang G S, Ge S H, Xu T, Ji Y, Yang X G, Leng Y J. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. https://doi.org/10.1038/nature16502. |
| [5] | Kalnaus S, Dudney N J, Westover A S, Herbert E, Hackney S. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): 1300. https://doi.org/10.1126/science.abg5998. |
| [6] | Li C, Wang Z Y, He Z J, Li Y J, Mao J, Dai K H, Yan C, Zheng J C. An advance review of solid-state battery: Challenges, progress and prospects[J]. Sustain. Mater. Techno., 2021, 29: e00297. https://doi.org/10.1016/j.susmat.2021.e00297. |
| [7] | Yu R, Chen Y J, Gao X, Chao D L. Elucidating the role of multi-scale microstructures in Li7La3Zr2O12 based all-solid-state lithium batteries[J]. Energy Storage Mater., 2024, 72: 103752. https://doi.org/10.1016/j.ensm.2024.103752. |
| [8] | Li X, Cong L N, Ma S C, Shi S N, Li Y N, Li S J, Chen S L, Zheng C H, Sun L Q, Liu Y L, Xie H M. Low resistance and high stable solid-liquid electrolyte interphases enable high‐voltage solid‐state lithium metal batteries[J]. Adv. Funct. Mater., 2021, 31(20): 2010611. https://doi.org/10.1002/adfm.202010611. |
| [9] | Li L S, Duan H H, Li J, Zhang L, Deng Y F, Chen G H. Toward high performance all‐solid‐state lithium batteries with high‐voltage cathode materials: design strategies for solid electrolytes, cathode interfaces, and composite electrodes[J]. Adv. Energy Mater., 2021, 11(28): 2003154. https://doi.org/10.1002/aenm.202003154. |
| [10] | Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103. https://doi.org/10.1038/natrevmats.2016.103. |
| [11] | Liu J, Yuan H, Liu H, Zhao C Z, Lu Y, Cheng X B, Huang J Q, Zhang Q. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Adv. Energy Mater., 2021, 12(4): 2100748. https://doi.org/10.1002/aenm.202100748. |
| [12] | Nolan A M, Liu Y S, Mo Y F. Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries[J]. ACS Energy Lett., 2019, 4(10): 2444-2451. https://doi.org/10.1021/acsenergylett.9b01703. |
| [13] | Ohta S, Kobayashi T, Seki J, Asaoka T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. J. Power Sources, 2012, 202: 332-335. https://doi.org/10.1016/j.jpowsour.2011.10.064. |
| [14] | Hong S B, Jang Y R, Kim H, Jung Y C, Shin G, Hah H J, Cho W, Sun Y K, Kim D W. Wet‐processable binder in composite cathode for high energy density all‐solid‐state lithium batteries[J]. Adv. Energy Mater., 2024, 14(35): 2400802. https://doi.org/10.1002/aenm.202400802. |
| [15] | Peng G, Yao X Y, Wan H L, Huang B X, Yin J Y, Ding F, Xu X X. Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte[J]. J. Power Sources, 2016, 307: 724-730. https://doi.org/10.1016/j.jpowsour.2016.01.039. |
| [16] | Yu R Z, Wang C H, Duan H, Jiang M, Zhang A B, Fraser A, Zuo J X, Wu Y L, Sun Y P, Zhao Y, Liang J W, Fu J M, Deng S X, Ren Z M, Li G H, Huang H, Li R Y, Chen N, Wang J T, Li X F, Singh C V, Sun X L. Manipulating charge‐transfer kinetics of lithium‐rich layered oxide cathodes in halide all‐solid‐state batteries[J]. Adv. Mater., 2022, 35(5): 2207234. https://doi.org/10.1002/adma.202207234. |
| [17] | Yang L, Deng W T, Xu W, Tian Y, Wang A N, Wang B W, Zou G Q, Hou H S, Deng W N, Ji X B. Olivine LiMnxFe1-xPO4 cathode materials for lithium ion batteries: restricted factors of rate performances[J]. J. Mater. Chem. A, 2021, 9(25): 14214-14232. https://doi.org/10.1039/d1ta01526e. |
| [18] | Jang J, Chen Y T, Deysher G, Cheng D Y, Ham S Y, Cronk A, Ridley P, Yang H D, Sayahpour B, Han B, Li W K, Yao W L, Wu E A, Doux J M, Nguyen L H B, Oh J A S, Tan D H S, Meng Y S. Enabling a Co-free, high-voltage LiNi0.5Mn1.5O4 cathode in all-solid-state batteries with a halide electrolyte[J]. ACS Energy Lett., 2022, 7(8): 2531-2539. https://doi.org/10.1021/acsenergylett.2c01397. |
| [19] | Chen S M, Wen K H, Fan J T, Bando Y, Golberg D. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. J. Mater. Chem. A, 2018, 6(25): 11631-11663. https://doi.org/10.1039/c8ta03358g. |
| [20] | Lv F, Wang Z Y, Shi L Y, Zhu J F, Edström K, Mindemark J, Yuan S A. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J. Power Sources, 2019, 441: 227175. https://doi.org/10.1016/j.jpowsour.2019.227175. |
| [21] | Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat. Nanotechnology, 2019, 14(7): 705-711. https://doi.org/10.1038/s41565-019-0465-3. |
| [22] | Chen X L, Li X J, Luo L J, He S N, Chen J, Liu Y F, Pan H G, Song Y, Hu R Z. Practical application of all‐solid‐state lithium batteries based on high‐voltage cathodes: challenges and progress[J]. Adv. Energy Mater., 2023, 13(35): 2301230. https://doi.org/10.1002/aenm.202301230. |
| [23] | Janek J, Zeier W G. Challenges in speeding up solid-state battery development[J]. Nat. Energy, 2023, 8(3): 230-240. https://doi.org/10.1038/s41560-023-01208-9. |
| [24] | Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all‐solid‐state batteries: lithium, sodium, and beyond[J]. Adv. Mater., 2020, 33(6): 2000721. https://doi.org/10.1002/adma.202000721. |
| [25] | Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production[J]. J. Power Sources, 2018, 382: 160-175. https://doi.org/10.1016/j.jpowsour.2018.02.062. |
| [26] | Thompson T, Wolfenstine J, Allen J L, Johannes M, Huq A, David I N, Sakamoto J. Tetragonal vs. cubic phase stability in Al - free Ta doped Li7La3Zr2O12 (LLZO)[J]. J. Mater. Chem. A, 2014, 2(33): 13431-13436. https://doi.org/10.1039/c4ta02099e. |
| [27] | Li Y T, Zhou W D, Xin S, Li S, Zhu J L, Lü X J, Cui Z M, Jia Q X, Zhou J S, Zhao Y S, Goodenough J B. Fluorine‐doped antiperovskite electrolyte for all‐solid‐state lithium‐ion batteries[J]. Angew. Chem. Int. Ed., 2016, 55(34): 9965-9968. https://doi.org/10.1002/anie.201604554. |
| [28] | Jian Z L, Hu Y S, Ji X L, Chen W. NASICON‐structured materials for energy storage[J]. Adv. Mater., 2017, 29(20): 1601925. https://doi.org/10.1002/adma.201601925. |
| [29] | Qin Z W, Meng X C, Xie Y M, Qian D L, Deng H K, Mao D X, Wan L, Huang Y X. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries[J]. Energy Storage Mater., 2021, 43: 190-201. https://doi.org/10.1016/j.ensm.2021.09.005. |
| [30] | Feng W L, Yang P, Dong X L, Xia Y Y. A low temperature soldered all ceramic lithium battery[J]. ACS Appl. Mater. Interfaces, 2021, 14(1): 1149-1156. https://doi.org/10.1021/acsami.1c21332. |
| [31] | Huang C Y, Tseng Y T, Lo H Y, Chang J K, Wu W W. In situ atomic scale investigation of Li7La3Zr2O12-based Li+-conducting solid electrolyte during calcination growth[J]. Nano Energy, 2020, 71: 104625. https://doi.org/10.1016/j.nanoen.2020.104625. |
| [32] | Kim Y, Waluyo I, Hunt A, Yildiz B. Avoiding CO2 improves thermal stability at the interface of Li7La3Zr2O12 electrolyte with layered oxide cathodes[J]. Adv. Energy Mater., 2022, 12(13): 2102741. https://doi.org/10.1002/aenm.202102741. |
| [33] | Huang X, Lu Y, Song Z, Rui K, Wang Q S, Xiu T P, Badding M E, Wen Z Y. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Mater., 2019, 22: 207-217. https://doi.org/10.1016/j.ensm.2019.01.018. |
| [34] | Wang R L, Ping W W, Wang C W, Liu Y S, Gao J L, Dong Q, Wang X Z, Mo Y F, Hu L B. Computation‐guided synthesis of new garnet‐type solid‐state electrolytes via an ultrafast sintering technique[J]. Adv. Mater., 2020, 32(46): 2005059. https://doi.org/10.1002/adma.202005059. |
| [35] | Gao Y, Sun S Y, Zhang X, Liu Y F, Hu J J, Huang Z G, Gao M X, Pan H G. Amorphous dual‐layer coating: enabling high Li‐ion conductivity of non‐sintered garnet‐type solid electrolyte[J]. Adv. Funct. Mater., 2021, 31(15): 2009692. https://doi.org/10.1002/adfm.202009692. |
| [36] |
Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P, Wilkening M, Geiger C A, Amthauer G. DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet[J]. Chem. Mater., 2014, 26(8): 2617-2623. https://doi.org/10.1021/cm5000999.
URL pmid: 25673921 |
| [37] | Harada M, Takeda H, Suzuki S, Nakano K, Tanibata N, Nakayama M, Karasuyama M, Takeuchi I. Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries[J]. J. Mater. Chem. A, 2020, 8(30): 15103-15109. https://doi.org/10.1039/d0ta04441e. |
| [38] | Kim K J, Balaish M, Wadaguchi M, Kong L, Rupp J L M. Solid‐state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv. Energy Mater., 2020, 11(1): 2002689. https://doi.org/10.1002/aenm.202002689. |
| [39] | Zhu G L, Zhao C Z, Yuan H, Zhao B C, Hou L P, Cheng X B, Nan H X, Lu Y, Zhang J, Huang J Q, Liu Q B, He C X, Zhang Q. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2020, 31: 267-273. https://doi.org/10.1016/j.ensm.2020.05.017. |
| [40] | Kraft M A, Ohno S, Zinkevich T, Koerver R, Culver S P, Fuchs T, Senyshyn A, Indris S, Morgan B J, Zeier W G. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries[J]. J. Am. Chem. Soc., 2018, 140(47): 16330-16339. https://doi.org/10.1021/jacs.8b10282. |
| [41] | Xu H J, Yu Y R, Wang Z, Shao G S. A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides[J]. J. Mater. Chem. A, 2019, 7(10): 5239-5247. https://doi.org/10.1039/c8ta11151k. |
| [42] | Zhang Z X, Zhang L, Yan X L, Wang H Q, Liu Y Y, Yu C, Cao X T, van Eijck L, Wen B. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J]. J. Power Sources, 2019, 410: 162-170. https://doi.org/10.1016/j.jpowsour.2018.11.016. |
| [43] | Gil-González E, Ye L, Wang Y, Shadike Z, Xu Z, Hu E, Li X. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Mater., 2022, 45: 484-493. https://doi.org/10.1016/j.ensm.2021.12.008. |
| [44] | Wu F, Fitzhugh W, Ye L H, Ning J X, Li X. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nat. Commun., 2018, 9(1): 4037. https://doi.org/10.1038/s41467-018-06123-2. |
| [45] | Wang Z Y, Zhao C Z, Sun S, Liu Y K, Wang Z X, Li S, Zhang R, Yuan H, Huang J Q. Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes[J]. Matter, 2023, 6(4): 1096-1124. https://doi.org/10.1016/j.matt.2023.02.012. |
| [46] | Gao Y J, Fu J M, Hu Y, Zhao F P, Li W H, Deng S X, Sun Y P, Hao X G, Ma J J, Lin X T, Wang C H, Li R Y, Sun X L. Reviving cost‐effective organic cathodes in halide‐based all‐solid‐state lithium batteries[J]. Angew. Chem. Int. Ed., 2024, 63(30): e202403331. https://doi.org/10.1002/anie.202403331. |
| [47] | Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Solid halide electrolytes with high lithium‐ion conductivity for application in 4 V class bulk‐type all‐solid‐state batteries[J]. Adv. Mater., 2018, 30(44): 1803075. https://doi.org/10.1002/adma.201803075. |
| [48] | Park K-H, Kaup K, Assoud A, Zhang Q, Wu X H, Nazar L F. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Lett., 2020, 5(2): 533-539. https://doi.org/10.1021/acsenergylett.9b02599. |
| [49] | Kim K, Park D, Jung H-G, Chung K Y, Shim J H, Wood B C, Yu S. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries[J]. Chem. Mater., 2021, 33(10): 3669-3677. https://doi.org/10.1021/acs.chemmater.1c00555. |
| [50] | Zhou L, Zuo T T, Kwok C Y, Kim S Y, Assoud A, Zhang Q, Janek J, Nazar L F. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nat. Energy, 2022, 7(1): 83-93. https://doi.org/10.1038/s41560-021-00952-0. |
| [51] | Kim S, Lee Y, Kim K, Wood B C, Han S S, Yu S. Fluorine-substituted lithium chloride solid electrolytes for high-voltage all-solid-state lithium-ion batteries[J]. ACS Energy Lett., 2023, 9(1): 38-47. https://doi.org/10.1021/acsenergylett.3c02307. |
| [52] | Li D Y, Yu D F, Zhang G W, Du A, Ye Z L, Jia Y R, Hou W Q, Xu T Z, Li F B, Chi S J, Zhu Y Z, Yang C P. High configuration entropy promises electrochemical stability of chloride electrolytes for high‐energy, long‐life all‐solid‐state batteries[J]. Angew. Chem. Int. Ed., 2024, e202419735. https://doi.org/10.1002/anie.202419735. |
| [53] | Song Z Y, Wang T R, Yang H, Kan W H, Chen Y W, Yu Q, Wang L K, Zhang Y N, Dai Y M, Chen H C, Yin W, Honda T, Avdeev M, Xu H H, Ma J W, Huang Y H, Luo W. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat. Commun., 2024, 15(1): 1481. https://doi.org/10.1038/s41467-024-45864-1. |
| [54] | Wang X E, Kerr R, Chen F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C. Toward high‐energy‐density lithium metal batteries: opportunities and challenges for solid organic electrolytes[J]. Adv. Mater., 2020, 32(18): 1905219. https://doi.org/10.1002/adma.201905219. |
| [55] | Yang L Y, Wei D X, Xu M, Yao Y F, Chen Q. Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design[J]. Angew. Chem. Int. Ed., 2014, 53(14): 3631-3635. https://doi.org/10.1002/anie.201307423. |
| [56] | Pan Q, Smith D M, Qi H, Wang S, Li C Y. Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Adv. Mater., 2015, 27(39): 5995-6001. https://doi.org/10.1002/adma.201502059. |
| [57] | Li C H, Zhou S, Dai L J, Zhou X Y, Zhang B A, Chen L W, Zeng T, Liu Y T, Tang Y F, Jiang J, Huang J Y. Porous polyamine/PEO composite solid electrolyte for high performance solid-state lithium metal batteries[J]. J. Mater. Chem. A, 2021, 9(43): 24661-24669. https://doi.org/10.1039/d1ta04599g. |
| [58] | Yang X F, Jiang M, Gao X J, Bao D N, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C T, Liang J W, Li W H, Li J J, Liu Y, Huang H, Zhang L, Lu S L, Lu Q W, Li R Y, Singh C V, Sun X L. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group[J]. Energ. Environ. Sci., 2020, 13(5): 1318-1325. https://doi.org/10.1039/d0ee00342e. |
| [59] | Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nat. Energy, 2018, 3(9): 739-746. https://doi.org/10.1038/s41560-018-0199-8. |
| [60] | Orue A, Arrese-Igor M, Gonzalez U, Gómez N, Cid R, López-Aranguren P. Enhancing high-voltage solid-state lithium-metal battery performance through a stable solid-electrolyte interphase[J]. J. Mater. Chem. A, 2024, 12(34): 22775-22784. https://doi.org/10.1039/d4ta02701a. |
| [61] | Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Differentiated lithium salt design for multilayered PEO electrolyte enables a high‐voltage solid‐state lithium metal battery[J]. Adv. Sci., 2019, 6(22): 1901036. https://doi.org/10.1002/advs.201901036. |
| [62] | Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J]. J. Am. Chem. Soc., 2016, 138(49): 15825-15828. https://doi.org/10.1021/jacs.6b10088. |
| [63] | Nie L, Chen S J, Zhang M T, Gao T Y, Zhang Y Y, Wei R, Zhang Y N, Liu W. An in-situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries[J]. Nano Res., 2023, 17(4): 2687-2692. https://doi.org/10.1007/s12274-023-6096-x. |
| [64] | Zhao L Y, Dong Q Y, Wang Y Q, Xue G Y, Wang X C, Li Z Y, Shao H, Chen H W, Shen Y B, Chen L W. Anion modulation: enabling highly conductive stable polymer electrolytes for solid‐state Li‐metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(52): e202412280. DOI: https://doi.org/10.1002/anie.202412280. |
| [65] | Bai Y Z, Ma W Q, Dong W J, Wu Y K, Wang X, Huang F Q. In-situ-polymerized 1,3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries[J]. ACS Appl. Mater. Interfaces, 2023, 15(22): 26834-26842. https://doi.org/10.1021/acsami.3c04234. |
| [66] | Zhao C Z, Zhao Q, Liu X T, Zheng J X, Stalin S, Zhang Q, Archer L A. Rechargeable lithium metal batteries with an in‐built solid‐state polymer electrolyte and a high voltage/loading Ni‐rich layered cathode[J]. Adv. Mater., 2020, 32(12): 1905629. https://doi.org/10.1002/adma.201905629. |
| [67] | Wang Q L, Cui Z L, Zhou Q, Shangguan X H, Du X F, Dong S M, Qiao L X, Huang S Q, Liu X C, Tang K, Zhou X H, Cui G L. A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries[J]. Energy Storage Mater., 2020, 25: 756-763. https://doi.org/10.1016/j.ensm.2019.09.010. |
| [68] | Li S, Chen Y M, Liang W F, Shao Y F, Liu K W, Nikolov Z, Zhu Y. A superionic conductive, electrochemically stable dual-salt polymer electrolyte[J]. Joule, 2018, 2(9): 1838-1856. https://doi.org/10.1016/j.joule.2018.06.008. |
| [69] | Liang W F, Shao Y F, Chen Y M, Zhu Y. A 4 V cathode compatible, superionic conductive solid polymer electrolyte for solid lithium metal batteries with long cycle life[J]. ACS Appl. Energy Mater., 2018, 1(11): 6064-6071. https://doi.org/10.1021/acsaem.8b01138. |
| [70] | Li H, Du Y F, Wu X M, Xie J Y, Lian F. Developing “polymer‐in‐salt” high voltage electrolyte based on composite lithium salts for solid‐state Li metal batteries[J]. Adv. Funct. Mater., 2021, 31(41): 2103049. https://doi.org/10.1002/adfm.202103049. |
| [71] | Chai J C, Liu Z H, Ma J, Wang J, Liu X C, Liu H S, Zhang J J, Cui G L, Chen L Q. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv. Sci., 2016, 4(2): 1600377. https://doi.org/10.1002/advs.201600377. |
| [72] | Wei Z Y, Zhang Z H, Chen S J, Wang Z H, Yao X Y, Deng Y H, Xu X X. UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature[J]. Energy Storage Mater., 2019, 22: 337-345. https://doi.org/10.1016/j.ensm.2019.02.004. |
| [73] | Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Double‐layer polymer electrolyte for high‐voltage all‐solid‐state rechargeable batteries[J]. Adv. Mater., 2018, 31(4): 1805574. https://doi.org/10.1002/adma.201805574. |
| [74] | Arrese-Igor M, Martinez-Ibañez M, Pavlenko E, Forsyth M, Zhu H, Armand M, Aguesse F, López-Aranguren P. Toward high-voltage solid-state Li-metal batteries with double-layer polymer electrolytes[J]. ACS Energy Lett., 2022, 7(4): 1473-1480. https://doi.org/10.1021/acsenergylett.2c00488. |
| [75] | Yu J M, Wang C, Li S H, Liu N, Zhu J, Lu Z D. Li+‐containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte[J]. Small, 2019, 15(44): 1902729. https://doi.org/10.1002/smll.201902729. |
| [76] | Luo B, Wang W G, Wang Q, Ji W J, Yu G H, Liu Z H, Zhao Z W, Wang X W, Wang S B, Zhang J F. Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes[J]. Chem. Eng. J., 2023, 460: 141329. https://doi.org/10.1016/j.cej.2023.141329. |
| [77] |
Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Lett., 2018, 18(6): 3829-3838. https://doi.org/10.1021/acs.nanolett.8b01111.
doi: 10.1021/acs.nanolett.8b01111 URL pmid: 29727578 |
| [78] | Jiang H, Wu Y Y, Ma J, Liu Y C, Wang L L, Yao X, Xiang H F. Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries[J]. J. Membrane Sci., 2021, 640: 119840. https://doi.org/10.1016/j.memsci.2021.119840. |
| [79] | Zhang D C, Xu X J, Huang X Y, Shi Z C, Wang Z S, Liu Z B, Hu R Z, Liu J, Zhu M. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries[J]. J. Mater. Chem. A, 2020, 8(35): 18043-18054. https://doi.org/10.1039/d0ta06697d. |
| [80] | Zhang S S, Li Z, Guo Y, Cai L R, Manikandan P, Zhao K J, Li Y, Pol V G. Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study[J]. Chem. Eng. J., 2020, 400: 125996. https://doi.org/10.1016/j.cej.2020.125996. |
| [81] | Meda L, Masafwa K, Crockem A N, Williams J A, Beamon N A, Adams J I, Tunis J V, Yang L, Schaefer J L, Wu J J. Cross-linked composite solid polymer electrolyte doped with Li6.4La3Zr1.4Ta0.6O12 for high voltage lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2024, 16(34): 44791-44801. https://doi.org/10.1021/acsami.4c08181. |
| [82] | Li X L, Yang L, Shao D S, Luo K L, Liu L, Wu Z Y, Luo Z G, Wang X Y. Preparation and application of poly(ethylene oxide)‐based all solid‐state electrolyte with a walnut‐like SiO2 as nano‐fillers[J]. J. Appl. Polym. Sci., 2019, 137(24): 48810. https://doi.org/10.1002/app.48810. |
| [83] | Lin D C, Liu W, Liu Y Y, Lee H R, Hsu P C, Liu K, Cui Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Lett., 2015, 16(1): 459-465. https://doi.org/10.1021/acs.nanolett.5b04117. |
| [84] | Sun J Q, Li Y G, Zhang Q H, Hou C Y, Shi Q W, Wang H Z. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires[J]. Chem. Eng. J., 2019, 375: 121922. https://doi.org/10.1016/j.cej.2019.121922. |
| [85] |
Liu W, Liu N, Sun J, Hsu P C, Li Y Z, Lee H W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett., 2015, 15(4): 2740-2745. https://doi.org/10.1021/acs.nanolett.5b00600.
doi: 10.1021/acs.nanolett.5b00600 URL pmid: 25782069 |
| [86] | Hu S, Du L L, Zhang G, Zou W Y, Zhu Z, Xu L, Mai L Q. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Appl. Mater. Interfaces, 2021, 13(11): 13183-13190. https://doi.org/10.1021/acsami.0c22635. |
| [87] | Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries[J]. Energy Storage Mater., 2020, 26: 283-289. https://doi.org/10.1016/j.ensm.2020.01.006. |
| [88] | Wang L, Xu S G, Wang Z, Yang E E, Jiang W Y, Zhang S H, Jian X G, Hu F Y. A nano fiber-gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries[J]. eScience, 2023, 3(2): 100090. https://doi.org/10.1016/j.esci.2022.100090. |
| [89] | Chai S M, Zhang Y P, Wang Y J, He Q, Zhou S, Pan A Q. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery[J]. eScience, 2022, 2(5): 494-508. https://doi.org/10.1016/j.esci.2022.04.007. |
| [90] | Chen F, Guo C X, Zhou H H, Shahzad M W, Liu T X, Oleksandr S, Sun J N, Dai S, Xu B B. Supramolecular network structured gel polymer electrolyte with high ionic conductivity for lithium metal batteries[J]. Small, 2022, 18(43): 2106352. https://doi.org/10.1002/smll.202106352. |
| [91] | Zhu J, Zhang J P, Zhao R Q, Zhao Y, Liu J, Xu N, Wan X J, Li C X, Ma Y F, Zhang H T, Chen Y S. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries[J]. Energy Storage Mater., 2023, 57: 92-101. https://doi.org/10.1016/j.ensm.2023.02.012. |
| [92] | Zhu J, Zhao R Q, Zhang J P, Song X C, Liu J, Xu N, Zhang H T, Wan X J, Ji X Y, Ma Y F, Li C X, Chen Y S. Long‐cycling and high‐voltage solid state lithium metal batteries enabled by fluorinated and crosslinked polyether electrolytes[J]. Angew. Chem. Int. Ed., 2024, 63(17): e202400303. https://doi.org/10.1002/anie.202400303. |
| [93] | Kim S H, Park N, Bo Lee W, Park J H. Functional sulfate additive‐derived interfacial layer for enhanced electrochemical stability of PEO‐based polymer electrolytes[J]. Small, 2023, 20(23): 2309160. https://doi.org/10.1002/smll.202309160. |
| [94] | Feng Y, Fan Y P, Zhao L F, Yu J T, Liao Y Q, Zhang T R, Zhang R C, Zhu H T, Sun X W, Hu Z, Zhang K, Chen J. Enhancing microdomain consistency in polymer electrolytes towards sustainable lithium batteries[J]. Angew. Chem. Int. Ed., 2025, 64(5): e202417105. https://doi.org/10.1002/anie.202417105. |
| [95] | Zhou G D, Yu J, Ciucci F. In situ prepared all-fluorinated polymer electrolyte for energy-dense high-voltage lithium-metal batteries[J]. Energy Storage Mater., 2023, 55: 642-651. https://doi.org/10.1016/j.ensm.2022.12.020. |
| [96] | Chen Y, Huo F, Chen S M, Cai W B, Zhang S J. In‐built quasi‐solid‐state poly‐ether electrolytes enabling stable cycling of high‐voltage and wide‐temperature Li metal batteries[J]. Adv. Funct. Mater., 2021, 31(36): 2102347. https://doi.org/10.1002/adfm.202102347. |
| [97] | Qiu B, Xu F, Qiu J M, Yang M, Zhang G Q, He C X, Zhang P X, Mi H W, Ma J M. Electrode-electrolyte interface mediation via molecular anchoring for 4.7 V quasi-solid-state lithium metal batteries[J]. Energy Storage Mater., 2023, 60: 102832. https://doi.org/10.1016/j.ensm.2023.102832. |
| [98] | Wang Y C, Ye L H, Fitzhugh W, Chen X, Li X. Interface coating design for dynamic voltage stability of solid‐state batteries[J]. Adv. Energy Mater., 2023, 13(41): 2302288. https://doi.org/10.1002/aenm.202302288. |
| [99] | Feng W L, Zhao Y F, Xia Y Y. Solid interfaces for the garnet electrolytes[J]. Adv. Mater., 2024, 36(15): 2306111. https://doi.org/10.1002/adma.202306111. |
| [100] | Su S M, Ma J B, Zhao L, Lin K, Li Q D, Lv S S, Kang F Y, He Y B. Progress and perspective of the cathode/electrolyte interface construction in all‐solid‐state lithium batteries[J]. Carbon Energy, 2021, 3(6): 866-894. https://doi.org/10.1002/cey2.129. |
| [101] | Song Y L, Yang L Y, Zhao W G, Wang Z J, Zhao Y, Wang Z Q, Zhao Q H, Liu H, Pan F. Revealing the short‐circuiting mechanism of garnet‐based solid‐state electrolyte[J]. Adv. Energy Mater., 2019, 9(21): 1900671. https://doi.org/10.1002/aenm.201900671. |
| [102] | Mahajani V, Bhimani K, Lakhnot A S, Panchal R, Anjan A, Manoj R M, Koratkar N. Facile magnetite coating for stable high‐voltage cycling of nickel‐rich cathodes in conventional liquid and all‐solid‐state lithium‐ion batteries[J]. Small, 2024, 20(33): 2402126. https://doi.org/10.1002/smll.202402126. |
| [103] | Qiu J L, Liu X Y, Chen R S, Li Q H, Wang Y, Chen P H, Gan L Y, Lee S J, Nordlund D, Liu Y J, Yu X Q, Bai X D, Li H, Chen L Q. Enabling stable cycling of 4.2 V high‐voltage all‐solid‐state batteries with PEO‐based solid electrolyte[J]. Adv. Funct. Mater., 2020, 30(22): 1909392. https://doi.org/10.1002/adfm.201909392. |
| [104] | Liang Y H, Liu H, Wang G X, Wang C, Li D B, Ni Y, Fan L Z. Heuristic design of cathode hybrid coating for power‐limited sulfide‐based all‐solid‐state lithium batteries[J]. Adv. Energy Mater., 2022, 12(33): 2201555. https://doi.org/10.1002/aenm.202201555. |
| [105] | Liang J N, Hwang S, Li S, Luo J, Sun Y P, Zhao Y, Sun Q, Li W H, Li M S, Banis M N, Li X, Li R Y, Zhang L, Zhao S Q, Lu S G, Huang H, Su D, Sun X L. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries[J]. Nano Energy, 2020, 78: 105107. https://doi.org/10.1016/j.nanoen.2020.105107. |
| [106] | Wang X, Huang S, Wei B B, Liu M, Yang B, Liu R Q, Jin H Y. Sacrificial additive C60-assisted catholyte buffer layer for Li1+xAlxTi2-x(PO4)3-based all-solid-state high-voltage batteries[J]. ACS Appl. Mater. Interfaces, 2024, 16(34): 44912-44920. https://doi.org/10.1021/acsami.4c09646. |
| [1] | 华炎波, 倪宝鑫, 蒋昆. 固态电解质反应器驱动的大气环境CO2捕集与电催化转化[J]. 电化学(中英文), 2025, 31(6): 2504082-. |
| [2] | 邓以诚, 游梓畅, 林耿忠, 唐果, 吴敬华, 周志民, 庄想春, 杨立萱, 张振杰, 温兆银, 姚霞银, 王长虹, 周倩, 崔光磊, 何平, 李惠, 艾新平. 对十大科学问题之三“如何获得满足固态电池应用需求的高性能锂离子固体电解质?”的回应——获得满足固态电池应用需求的高性能锂离子固体电解质策略[J]. 电化学(中英文), 2025, 31(10): 2516002-. |
| [3] | 杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001-. |
| [4] | 朱瑞杰, 李泽辰, 张伟, 奈須滉, 小林弘明, 松井雅樹. 全固态钠离子电池:次世代电池竞赛中的领先竞争者[J]. 电化学(中英文), 2024, 30(12): 2415002-. |
| [5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
| [6] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
| [7] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
| [8] | 张丙凯, 杨卢奕, 李舜宁, 潘锋. 固态电解质中锂离子传输机理研究进展[J]. 电化学(中英文), 2021, 27(3): 269-277. |
| [9] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
| [10] | 马嘉林, 王红春, 龚正良, 杨勇. 石榴石型固态电解质/铝锂合金界面构筑及电化学性能[J]. 电化学(中英文), 2020, 26(2): 262-269. |
| [11] | 王雪龙, 肖睿娟, 向勇, 李泓, 陈立泉. 固态锂电池中正极/电解质界面的密度泛函计算研究[J]. 电化学(中英文), 2017, 23(4): 381-390. |
| [12] | 李丽,许晶晶,韩少杰,吴晓东,卢威,陈立桅. 高电压镍锰酸锂正极/电解液界面本征性质的研究[J]. 电化学(中英文), 2016, 22(6): 582-589. |
| [13] | 郭择良,伍 晖. 锂离子电池硅负极循环稳定性研究进展[J]. 电化学(中英文), 2016, 22(5): 499-512. |
| [14] | 郑杰允,郑浩,汪锐,李泓*,陈立泉. 力曲线用于硅负极材料表面膜的研究[J]. 电化学(中英文), 2013, 19(6): 530-536. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||