[1] Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452.
[2] Zhu JP, Xu QB, Junjie-Zhao, et al. Synthesis and Electrochemical Properties of Modification LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Li-ion Battery[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(3): 2534-2538.
[3] Okubo M, Mizuno Y, Yamada H, et al. Fast Li-Ion Insertion into Nanosized LiMn2O4 without Domain Boundaries[J]. ACS Nano, 2010, 4(2): 741-752.
[4] Li QY, Zheng FH, Huang YG, et al. Surfactants assisted synthesis of nano-LiFePO4/C composite as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(5): 2025-2035.
[5] Liu J, Manthiram A. Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4[J]. Journal of Physical Chemistry C, 2009, 113(33): 15073-15079.
[6] Kim K, Kim Y, Oh ES, et al. The role of fluoride in protecting LiNi0.5Mn1.5O4 electrodes against high temperature degradation[J]. Electrochimica Acta, 2013, 114: 387-393.
[7] Konishi H, Suzuki K, Taminato S, et al. Effect of surface Li3PO4 coating on LiNi0.5Mn1.5O4 epitaxial thin film electrodes synthesized by pulsed laser deposition[J]. Journal of Power Sources, 2014, 269(4): 293-298.
[8] Manthiram A, Chemelewski K, Lee ES. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4): 1339-1350.
[9] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417.
[10] Zhang SS. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394.
[11] Liu J, Manthiram A. Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 Before and After Surface Modifications[J]. Journal of Electrochemical Society, 2009, 156(12): A833-A838.
[12] Wu HM, Belharouak I, Abouimrane A, et al. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(5): 2909-2913.
[13] Xu JJ, Hu YY, Liu T, et al. Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode[J]. Nano Energy, 2014, 5(4): 67-73.
[14] Choi NS, Han JG, Ha SY, et al. Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries[J]. RSC Advances, 2015, 5(4): 2732-48.
[15] Bae SY, Shin WK, Kim DW. Protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials[J]. Electrochimica Acta, 2014, 125(12): 497-502.
[16] Li B, Wang YQ, Tu WQ, et al. Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive[J]. Electrochimica Acta, 2014, 147: 636-642.
[17] Wang Y, Peng Q, Yang G, et al. High-stability 5 V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide[J]. Electrochimica Acta, 2014, 136(8): 450-456.
[18] Xu JJ, Xia QB, Chen FY, et al. Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film[J]. Electrochimica Acta, 2016, 191: 687-694.
[19] Han JG, Lee SJ, Lee J,et al. Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7(15): 8319-8329.
[20] Gellert M, Gries KI, Zakel J, et al. LiNi0.5Mn1.5O4 Thin-Film Cathodes on Gold-Coated Stainless Steel Substrates: Formation of Interlayers and Electrochemical Properties[J]. Electrochimica Acta, 2014, 133: 146-152.
[21] Talyosef Y, Markovsky B, Salitra G, et al. The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1): 664-669.
[22] Chong J, Xun SD, Zhang JP, et al. Li3PO4-Coated LiNi0.5Mn1.5O4: A Stable High-Voltage Cathode Material for Lithium-Ion Batteries[J]. Chemistry-European Journal, 2014, 20(24): 7479-7485.
[23] Tan S, Ji YJ, Zhang ZR, et al. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries[J]. Chemphyschem, 2014, 15(10): 1956-1969.
[24] Aurbach D, Levi MD, Levi E, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. Journal of Electrochemical Society, 1998, 145(9): 3024-3034.
[25] Duncan H, Duguay D, Abu-Lebdeh Y, et al. Study of the LiMn1.5Ni0.5O4∕Electrolyte Interface at Room Temperature and 60°C[J]. Journal of Electrochemical Society, 2011, 158(5): A537-A545.
[26] Duncan H, Abu-Lebdeh Y, Davidson IJ. Study of the Cathode–Electrolyte Interface of LiMn1.5Ni0.5O4 Synthesized by a Sol–Gel Method for Li-Ion Batteries[J]. Journal of Electrochemical Society, 2010, 157(4): A528-A535.
[27] Yang L, Ravdel B, Lucht BL. Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters, 2010, 13(8): A95-A97.
[28] Kim JW, Kim DH, Oh DY, et al. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 1254-1262.
[29] Haik O, Leifer N, Samuk-Fromovich Z, et al. On the Surface Chemistry of LiMO2 Cathode Materials (M=[MnNi] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies[J]. Journal of Electrochemical Society, 2010, 157(10): A1099-A1107.
[30] Wu C, Bai Y, Wu F. Fourier-transform infrared spectroscopic studies on the solid electrolyte interphase formed on Li-doped spinel Li1.05Mn1.96O4 cathode[J]. Journal of Power Sources, 2009, 189(1): 89-94. |