欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (10): 2516002.  doi: 10.61558/2993-074X.3585

• 综述 • 上一篇    

对十大科学问题之三“如何获得满足固态电池应用需求的高性能锂离子固体电解质?”的回应——获得满足固态电池应用需求的高性能锂离子固体电解质策略

邓以诚a,#, 游梓畅b,#, 林耿忠a,#, 唐果a,#, 吴敬华c,#, 周志民d,#, 庄想春e,#, 杨立萱e,#, 张振杰f,#, 温兆银b,*(), 姚霞银c,*(), 王长虹d,*(), 周倩e,*(), 崔光磊e,*(), 何平f,*(), 李惠g,*(), 艾新平a,*()   

  1. a湖北电化学能源重点实验室,武汉大学化学与分子科学学院,湖北 武汉 430072
    b高性能陶瓷与超微结构国家重点实验室,中国科学院上海硅酸盐研究所,上海 200050;中国科学院大学材料科学与光电工程中心,北京 100049
    c中国科学院宁波材料技术与工程研究所,浙江 宁波 315201;中国科学院大学材料科学与光电工程中心,北京 100049
    d东方理工高等研究院,宁波数字孪生研究院,东方理工大学;浙江省全固态电池重点实验室,宁波市全固态电池重点实验室,浙江 宁波 315200
    e青岛储能产业技术研究院,中国科学院青岛生物能源与过程研究所,山东 青岛 266101
    f储能材料与技术中心,南京大学工程与应用科学学院,江苏省人工功能材料重点实验室,固体微结构物理国家重点实验室,先进微结构协同创新中心,江苏 南京 210093
    g新型纺织材料与先进加工技术国家重点实验室,武汉纺织大学,湖北 武汉 430200
  • 收稿日期:2025-08-07 修回日期:2025-09-10 接受日期:2025-09-22 发布日期:2025-09-22 出版日期:2025-10-28

Strategies for Obtaining High-Performance Li-Ion Solid-State Electrolytes for Solid-State Batteries

Deng Yi-Chenga,#, You Zi-Changb,#, Lin Geng-Zhonga,#, Tang Guoa,#, Wu Jing-Huac,#, Zhou Zhi-Mind,#, Zhuang Xiang-Chune,#, Yang Li-Xuane,#, Zhang Zhen-Jief,#, Wen Zhao-Yinb,*(), Yao Xia-Yinc,*(), Wang Chang-Hongd,*(), Zhou Qiane,*(), Cui Guang-Leie,*(), He Pingf,*(), Li Huig,*(), Ai Xin-Pinga,*()   

  1. aHubei Key Laboratory of Electrochemical Power Sources, College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
    bState Key Lab of High Performance Ceram and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
    cNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
    dEastern Institute for Advanced Study, Ningbo Institute of Digital Twin, Eastern Institute of Technology. Zhejiang Key Laboratory of All-Solid-State Battery, Ningbo Key Laboratory of All-Solid-State Battery, Ningbo, 315200, P. R. China
    eQingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
    fCenter of Energy Storage Mater. & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
    gState Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, Hubei, P. R. China
  • Received:2025-08-07 Revised:2025-09-10 Accepted:2025-09-22 Online:2025-09-22 Published:2025-10-28
  • Contact: *Zhao-Yin Wen, E-mail address: zywen@mail.sic.ac.cn, Xia-Yin Yao, E-mail address: yaoxy@nimte.ac.cn, Chang-Hong Wang, E-mail address: cwang@eitech.edu.cn, Qian Zhou, E-mail address: zhouqian3@qibebt.ac.cn, Guang-Lei Cui, E-mail address: cuigl@qibebt.ac.cn, Ping He: E-mail address: pinghe@nju.edu.cn, Hui Li, E-mail address: lih@whu.edu.cn, Xin-Ping Ai: E-mail address: xpai@whu.edu.cn
  • About author:#Contributed equally to this work as the co-first authors.

    Equal Contribution Statement

    All first authors contributed equally to this work, with no priority in their listing order. Similarly, the corresponding authors are jointly designated, and their sequence carries no hierarchical significance.

摘要:

随着锂离子电池(LIBs)在便携式电子产品、电动汽车和电网储能领域的广泛应用,因可燃液态有机电解质所引起的电池安全问题受到越来越多的关注。固态锂电池(SSLBs)凭借其高安全性和高的能量密度潜力,被视为下一代储能技术的重要方向。然而,固态电解质(SSEs)的实际应用仍面临诸多挑战,包括离子电导率低、与电极界面相容性差、机械性能不理想,以及规模化制备困难等。如何获得满足应用需求的高性能锂离子固态电解质呢?为回答这一科学问题,本文系统梳理了近年来SSEs的研究进展,涵盖无机类(氧化物、硫化物、卤化物)、有机类(聚合物、塑性晶体、聚离子液体)以及新兴的软固态电解质(S3Es)类。分析表明,单组分(无机、有机)固态电解质存在固有局限性,且仅通过成分和结构调整难以完全克服。相比之下,软固态电解质,特别是基于“刚-柔协同”复合策略和借助多孔框架实现“Li+去溶剂化”机制的S3Es体系,能够通过整合互补组分的优势,在电化学性能(如离子电导率与电化学稳定窗口)、力学性能及可加工性方面实现协同提升,展现出作为下一代SSEs的巨大潜力。此外,本文还进一步探讨了S3Es面向实际应用所面临的关键挑战及新兴研究趋势,旨在为高性能SSEs的未来发展提供战略性见解。

关键词: 固态电解质, 固态电池, 软固态电解质, 离子电导率, 界面稳定性

Abstract:

With the widespread adoption of lithium-ion batteries (LIBs), safety concerns associated with flammable organic electrolytes have become increasingly critical. Solid-state lithium batteries (SSLBs), with enhanced safety and higher energy density potential, are regarded as a promising next-generation energy storage technology. However, the practical application of solid-state electrolytes (SSEs) remains hindered by several challenges, including low Li+ ion conductivity, poor interfacial compatibility with electrodes, unfavorable mechanical properties and difficulties in scalable manufacturing. This review systematically examines recent progress in SSEs, including inorganic types (oxides, sulfides, halides), organic types (polymers, plastic crystals, poly(ionic liquids) (PILs)), and the emerging class of soft solid-state electrolytes (S3Es), especially those based on “rigid-flexible synergy” composites and “Li+-desolvation” mechanism using porous frameworks. Critical assessment reveals that single-component SSEs face inherent limitations that are difficult to be fully overcome through compositional and structural modification alone. In contrast, S3Es integrate the strength of complementary components to achieve a balanced and synergic enhancement in electrochemical properties (e.g., ionic conductivity and stability window), mechanical integrity, and processability, showing great promise as next-generation SSEs. Furthermore, the application-oriented challenges and emerging trends in S3E research are outlined, aiming to provide strategic insights into future development of high-performance SSEs.

Key words: Solid-state electrolytes, Solid-state batteries, Soft solid-state electrolytes, Lithium-ion conductivity, Interface compatibility