[1] |
Feng J Z, Wang Y, Xu Y T, Ma. H Y, Wang G W, Ma P J, Tang Y, Yan X B. Construction of supercapacitor-based ionic diodes with adjustable bias directions by using poly(ionic liquid) electrolytes[J]. Adv. Mater., 2021, 33(31): 2100887.
|
[2] |
Feng J Z, Wang Y, Xu Y T, Sun Y L, Tang Y, Yan X B. Ion regulation of ionic liquid electrolytes for supercapacitors[J]. Energy Environ. Sci., 2021, 14: 2859-2882.
|
[3] |
Zhang E, Fulik N, Hao G P, Zhang H Y, Kaskel S. An asymmetric supercapacitor-diode (CAPode) for unidirectional energy storage[J]. Angew. Chem. Int. Ed., 2019 58(37): 13060-13065.
|
[4] |
Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J]. Natl. Sci. Rev., 2017 4(3): 453-489.
|
[5] |
Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nat. Commun., 2016, 7: 12647
doi: 10.1038/ncomms12647
pmid: 27600869
|
[6] |
Gogotsi Y, Penner R M. Energy storage in nanomaterials - Capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3): 2081-2083.
doi: 10.1021/acsnano.8b01914
pmid: 29580061
|
[7] |
González A, Goikolea E, Barrena J A, Mysyk R. Review on supercapacitors: Technologies and materials[J]. Renew. Sust. Energy Rev., 2016, 58: 1189-1206.
|
[8] |
Zhong C, Deng Y D, Hu W P, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44: 7484-539.
doi: 10.1039/c5cs00303b
pmid: 26050756
|
[9] |
Xiao D W, Dou Q Y, Zhang L, Ma Y L, Shi S Q, Yan X B. Optimization of organic/water hybrid electrolytes for high‐rate carbon‐based supercapacitor[J]. Adv. Funct. Mater., 2019, 29(42): 1904136.
|
[10] |
Dou Q Y, Lei S L, Wang D W, Zhang Q N, Xiao D W, Guo H W, Wang A P, Yang H, Li Y L, Shi S Q, Yan X B. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte[J]. Energy Environ. Sci., 2018 11: 3212-3219.
|
[11] |
Wang C S, Pu Y X, Feng J Z, Xu Y T, Su K L M, Yang B J, Lang J W, Tian G K. Aqueous supercapacitors with low cost and high voltage enabled by Co‐solute crowding effect of electrolyte[J]. ChemElectroChem, 2022, 9(22): 202200882.
|
[12] |
Pal B, Yang S, Ramesh S, Thangadurai V, Jose J. Electrolyte selection for supercapacitive devices: A critical review[J]. Nanoscale Adv., 2019, 1: 3807-3835.
doi: 10.1039/c9na00374f
pmid: 36132093
|
[13] |
Suo L M, Han F D, Fan X L, Liu H L, Xu K, Wang C S. “Water-in-Salt” electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications[J]. J. Mater. Chem. A., 2016, 4: 6639-6644.
|
[14] |
Liang T T, Hou R L, Dou Q Y, Zhang H Z, Yan X B. The applications of water‐in‐salt electrolytes in electrochemical energy storage devices[J]. Adv. Funct. Mater., 2020, 3(31): 2006749.
|
[15] |
Tian X, Zhu Q Z, Xu B. “Water‐in‐Salt” electrolytes for supercapacitors: A review[J]. ChemSusChem, 2021, 14(12): 2501-2515.
|
[16] |
Guo J H, Ma Y L, Zhao K, Wang Y, Yang B P, Cui J F, Yan X B. High‐performance and ultra‐stable aqueous supercapacitors based on a green and low-cost water‐in‐salt electrolyte[J]. ChemElectroChem, 2019, 6(21): 5433-5438.
|
[17] |
Bu X D, Su L J, Dou Q Y, Lei S L, Yan X B. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor[J]. J. Mater. Chem. A., 2019, 7: 7541-7547.
|
[18] |
Zhang M, Wang W J, Liang X H, Li C, Deng W J, Chen H B, Li R. Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor[J]. Chin. Chem. Lett., 2021, 32(7): 2217-2221.
|
[19] |
Liu Q, Zhou J W, Song C H., Li X L, Wang Z P, Yang J, Cheng J L, Li H, Wang B. 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt" gel electrolyte and N-doped graphene fiber[J]. Energy Storage Mater., 24: 495-503.
|
[20] |
Wu S L, Su B Z, Sun M Z, Gu S, Lu Z G, Zhang K L, Yu D Y W, Huang B L, Wang P F, Lee C S, Zhang W J. Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering[J]. Adv. Mater., 2021, 33(41): 2102390.
|
[21] |
Yu J H, Yu C, Song X D, Zhang Q, Wang Z, Xie Y Y, Liu Y B, Li W B, Ding Y W, Qiu J S. Microscopic-level insights into solvation chemistry for nonsolvating diluents enabling high-voltage/rate aqueous supercapacitors[J]. J. Am. Chem. Soc., 2023 145(25): 13828-13838.
|
[22] |
Arbizzani C, Biso M, Cericola D, Lazore M, Soavi F, Mastragostino M. Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes[J]. J. Power Sources., 2008, 185(2):1575-1579.
|
[23] |
Chen J W, Vatamanu J, Xing L D, Borodin O, Chen H Y, Guan X C, Liu X, Xu K, Li W S. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes[J]. Adv. Energy Mater., 2019, 10: 1902654.
|
[24] |
Ciurduc E, Cruz C, Patil N, Mavrandonakis A, Marcilla R. Molecular crowding bi-salt electrolyte for aqueous zinc hybrid batteries[J]. Energy Storage Mater., 2022, 53: 532-543.
|
[25] |
Yue J M, Lin L D, Jiang L W, Zhang Q Q, Tong Y X, Suo L M, Hu Y S, Li H, Huang X J, Chen L Q. Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte[J]. Adv. Energy Mater., 2020, 10(36): 2000665.
|
[26] |
Dou Q Y, Liu L Y, Yang B J, Lang J W, Yan X B. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors[J]. Nat. Commun., 2017, 8: 2188.
doi: 10.1038/s41467-017-02152-5
pmid: 29259171
|
[27] |
Ruschhaupt R, Pohlmann S, Varzi A, Passerini S. Determining realistic electrochemical stability windows of electrolytes for electrical double layer capacitors[J]. Batteries & Supercaps, 2020, 3(8): 698-707.
|
[28] |
Pal B, Yang S, Ramesh S, Thangadurai V, Rajan J. Electrolyte selection for supercapacitive devices: A critical review[J]. Nanoscale Adv., 2019, 1(10): 3807-3835.
doi: 10.1039/c9na00374f
pmid: 36132093
|
[29] |
Guo W, Yu C, Li S F, Song X D, Yang Y, Qiu B, Zhao C T, Huang H W, Yang J, Han X T, Li D, Qiu J S. A phase transformation-resistant electrode enabled by a MnO2 confined effect for enhanced energy storage[J], Adv. Funct. Mater., 2019, 27(29): 1901342.
|
[30] |
Dou Q Y, Lian C, Lei S L, Chen J T, Liu H L, Yan X B. Silica-grafted ionic liquid for maximizing the operational voltage of electrical double-layer capacitors[J]. Energy Storage Mater., 2019, 18: 253-259.
|
[31] |
Liu Z X, Luo X B, Qin L P, Fang G Z, Liang S Q. Progress and prospect of low-temperature zinc metal batteries[J]. Adv. Powder Mater., 2021, 1(2): 100011.
|
[32] |
Zhang Q N, Xu S, Wang Y, Dou Q Y, Sun Y L, Yan X B. Temperature-dependent structure and performance evolution of “water-in-salt” electrolyte for supercapacitor[J]. Energy Storage Mater., 2023, 55: 205-213.
|
[33] |
Lei S, Zeng Z Q, Liu M C, Zhang H, Cheng S J, Xie J. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano energy, 2022, 98: 107265.
|