[1] |
Zhang L W, Vertes A. Single-cell mass spectrometry approaches to explore cellular heterogeneity[J]. Angew. Chem. Int. Ed., 2018, 57(17): 4466-4477.
doi: 10.1002/anie.201709719
pmid: 29218763
|
[2] |
Altschuler S J, Wu L F. Cellular heterogeneity: Do differences make a difference[J] Cell, 2010, 141(4): 559-563.
doi: 10.1016/j.cell.2010.04.033
pmid: 20478246
|
[3] |
Huang K, Wang Y H, Zhang H, Wang T Y, Liu X H, Liu L, Jiang H, Wang X M. Application and outlook of electrochemical technology in single-cell analysis[J]. Biosens. Bioelectron., 2023, 242: 115741.
|
[4] |
Chinese society of electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121.
doi: 10.61558/2993-074X.3444
|
[5] |
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016, 116(22): 13234-13278.
pmid: 27736057
|
[6] |
Ushiki T, Nakajima M, Choi M, Cho S J, Iwata F. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy[J]. Micron, 2012, 43(12): 1390-1398.
doi: 10.1016/j.micron.2012.01.012
pmid: 22425359
|
[7] |
Lazenby R A, White R J. Advances and perspectives in chemical imaging in cellular environments using electrochemical methods[J]. Chemosensors, 2018, 6(2): 24.
|
[8] |
Zhu C, Huang K X, Siepser N P, Baker L A. Scanning ion conductance microscopy[J]. Chem. Rev., 2021, 121(19): 11726-11768.
|
[9] |
Kempaiah R, Vasudevamurthy G, Subramanian A. Scanning probe microscopy based characterization of battery materials, interfaces, and processes[J]. Nano Energy, 2019, 65: 103925.
|
[10] |
Page A, Perry D, Unwin P R. Multifunctional scanning ion conductance microscopy[J]. Proc. Math. Phys. Eng. Sci., 2017, 473(2200): 20160889.
|
[11] |
Mirkin M V. High resolution studies of heterogeneous processes with the scanning electrochemical microscope[J] Mikrochim. Acta, 1999, 130(3): 127-153.
|
[12] |
Kai T H, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018, 54(16): 1934-1947.
|
[13] |
Amemiya S, Guo J, Xiong H, Gross D A. Biological applications of scanning electrochemical microscopy: Chemical imaging of single living cells and beyond[J]. Anal. and Bioanal. Chem., 2006, 386(3): 458-471.
|
[14] |
Bergner S, Vatsyayan P, Matysik F M. Recent advances in high resolution scanning electrochemical microscopy of living cells-a review[J]. Anal. Chim. Acta., 2013, 775: 1-13.
doi: 10.1016/j.aca.2012.12.042
pmid: 23601970
|
[15] |
Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy[J]. Proc. Math. Phys. Eng. Sci., 2018, 474(2218): 20180409.
|
[16] |
Wu J N, Gao Y F, Pan N, Lu L P, Wang X Y. An isolated single-particle-based SECM tip interface for single-cell NO sensing[J]. Biosens. Bioelectron., 2023, 223: 115048.
|
[17] |
Nebel M, Grutzke S, Diab N, Schulte A, Schuhmann W. Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: The influence of the faradaic tip reaction.[J]. Angew. Chem. Int. Ed., 2013, 52(24): 6335-6338.
doi: 10.1002/anie.201301098
pmid: 23630168
|
[18] |
Happel P, Thatenhorst D, Dietzel I D. Scanning ion conductance microscopy for studying biological samples[J]. Sensors, 2012, 12(11): 14983-15008.
doi: 10.3390/s121114983
pmid: 23202197
|
[19] |
Muhammed Y, Lazenby R A. Scanning ion conductance microscopy revealed cisplatin-induced morphological changes related to apoptosis in single adenocarcinoma cells[J]. Anal. Methods, 2024, 16(4): 503-514.
|
[20] |
Hansma P K, Drake B, Marti O, Gould S A, Prater C B. The scanning ion-conductance microscope[J]. Science, 1989, 243(4891): 641-643.
pmid: 2464851
|
[21] |
Korchev Y E, Milovanovic M, Bashford C L, Bennett D C, Sviderskaya E V, Vodyanoy I, Lab M J. Specialized scanning ion-conductance microscope for imaging of living cells[J]. J. Microsc.-Oxf., 1997, 188: 17-23.
|
[22] |
Song Y, Zhang S T, Cao C, Yan J, Li M, Li X Y, Chen F, Gu N. Imaging structural and electrical changes of aging cells using scanning ion conductance microscopy[J]. Small Methods, 2023, 8(8): e2301315.
|
[23] |
Gesper A, Thatenhorst D, Wiese S, Tsai T, Dietzel I D. Patrick H. Long-term, long-distance recording of a living migrating neuron by scanning ion conductance microscopy[J]. Scanning, 2015, 37(3): 226-231.
doi: 10.1002/sca.21200
pmid: 25728639
|
[24] |
Huang K X, Zhou L S, Alanis K, Hou J H, Baker L A. Imaging effects of hyperosmolality on individual tricellular junctions[J]. Chem. Sci., 2020, 11(5): 1307-1315.
doi: 10.1039/c9sc05114g
pmid: 33209250
|
[25] |
Tognoni E. High-speed multifunctional scanning ion conductance microscopy: Innovative strategies to study dynamic cellular processes[J]. Curr. Opin. Electrochem., 2021, 28: 100738.
|
[26] |
Navikas V, Leitao S M, Grussmayer K S, Descloux A, Drake B, Yserentant K, Werther P, Herten D P, Wombacher R, Radenovic A, Fantner G E. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy[J]. Nat. Commun., 2021, 12(1): 4565.
doi: 10.1038/s41467-021-24901-3
pmid: 34315910
|
[27] |
Sanchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Korchev Y E. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette[J]. Biophys. J., 2008, 95(6): 3017-3027.
doi: 10.1529/biophysj.108.129551
pmid: 18515369
|
[28] |
McKelvey K, Edwards M A, White H S. Resistive pulse delivery of single nanoparticles to electrochemical interfaces[J]. J. Phys. Chem. Lett., 2016, 7(19): 3920-3924.
pmid: 27648913
|
[29] |
Babakinejad B, Jonsson P, Lopez Cordoba A, Actis P, Novak P, Takahashi Y, Shevchuk A, Anand U, Anand P, Drews A, Ferrer-Montiel A, Klenerman D, Korchev Y E. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells[J]. Anal. Chem., 2013, 85(19): 9333-9342.
doi: 10.1021/ac4021769
pmid: 24004146
|
[30] |
Lan W J, Holden D A, Liu J, White H S. Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore[J]. J. Phys. Chem. C, 2011, 115(38): 18445-18452.
|
[31] |
Saha-Shah A, Weber A E, Karty J A, Ray S J, Hieftje G M, Baker L A. Nanopipettes: Probes for local sample analysis[J]. Chem. Sci., 2015, 6(6): 3334-3341.
doi: 10.1039/c5sc00668f
pmid: 28706697
|
[32] |
Oh K W. 6-Lab-on-chip (LOC) devices and microfluidics for biomedical applications[M]. Woodhead: Elsevler, 2012: 150-171.
|
[33] |
Delgado A V, Gonzalez-Caballero F, Hunter R J, Koopal L K, Lyklema J. Measurement and interpretation of electrokinetic phenomena[J]. Pure. Appl. Chem., 2005, 77(10): 1753-1805
|
[34] |
Bruckbauer A, James P, Zhou D, Yoon J W, Excell D, Korchev Y, Jones R, Klenerman D. Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking[J]. Biophys. J., 2007, 93(9): 3120-3131.
pmid: 17631532
|
[35] |
Seger R A, Actis P, Penfold C, Maalouf M, Vilozny B, Pourmand N. Voltage controlled nano-injection system for single-cell surgery[J]. Nanoscale, 2012, 4(19): 5843-5846.
doi: 10.1039/c2nr31700a
pmid: 22899383
|
[36] |
Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N, Korchev Y, Gorelkin P. Scanning ion-conductance microscopy for studying mechanical properties of neuronal cells during local delivery of glutamate[J]. Cells, 2023, 12(20): 2428.
|
[37] |
Page A, Kang M, Armitstead A, Perry D, Unwin P R. Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy-scanning electrochemical microscopy[J]. Anal. Chem., 2017, 89(5): 3021-3028.
doi: 10.1021/acs.analchem.6b04629
pmid: 28264566
|
[38] |
Howorka S, Siwy Z. Nanopore analytics: Sensing of single molecules[J]. Chem. Soc. Rev., 2009, 38(8): 2360-2384.
doi: 10.1039/b813796j
pmid: 19623355
|
[39] |
Wang Y X, Cai H J, Mirkin M V. Delivery of single nanoparticles from nanopipettes under resistive-pulse control[J]. ChemElectroChem, 2014, 2(3): 343-347.
|
[40] |
Pandey P, Sesena-Rubfiaro A, Khatri S, He J. Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection[J]. Faraday Discuss., 2022, 233(0): 315-335.
|
[41] |
Chau C C, Maffeo C M, Aksimentiev A, Radford S E, Hewitt E W, Actis P. Single molecule delivery into living cells[J]. Nat. Commun., 2024, 15(1): 4403.
doi: 10.1038/s41467-024-48608-3
pmid: 38782907
|
[42] |
Liu Y, Xu C, Chen X W, Wang J H, Yu P, Mao L Q. Voltage-driven counting of phospholipid vesicles with nanopipettes by resistive-pulse principle[J]. Electrochem. Commun., 2018, 89: 38-42.
|
[43] |
Terejanszky P, Makra I, Furjes P, Gyurcsanyi R E. Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipets[J]. Anal. Chem., 2014, 86(10): 4688-4697.
doi: 10.1021/ac500184z
pmid: 24773609
|
[44] |
Holden D A, Watkins J J, White H S. Resistive-pulse detection of multilamellar liposomes[J]. Langmuir, 2012, 28(19): 7572-7577.
doi: 10.1021/la300993a
pmid: 22530770
|
[45] |
Actis P, Maalouf M M, Kim H J, Lohith A, Vilozny B, Seger R A, Pourmand N. Compartmental genomics in living cells revealed by single-cell nanobiopsy[J]. ACS Nano, 2014, 8(1): 546-553.
doi: 10.1021/nn405097u
pmid: 24279711
|
[46] |
Ando T. High-speed atomic force microscopy and its future prospects[J]. Biophys. Rev., 2018, 10(2): 285-292.
doi: 10.1007/s12551-017-0356-5
pmid: 29256119
|