电化学(中英文) ›› 2024, Vol. 30 ›› Issue (11): 2408051. doi: 10.61558/2993-074X.3481
所属专题: “下一代二次电池”专题文章
Shi-Hua Maa,*(), Qi Yina, Jin-Ping Zhaob,*(
)
摘要:
水系超级电容器具有快速充放电特性,已经成为一种重要的电化学储能器件。然而,它们的应用受到了较窄电压窗口的制约。尽管近年来盐包水(WIS)电解质的设计已显著克服了这一应用缺陷,但工作电压窗口高达2.5 V的WIS体系仍然非常稀缺。为了丰富超级电容器所用高压水系电解质的类型,本文基于三氟甲烷磺酸四甲基铵盐(TMAOTf)的电化学惰性,报道了一种由TMAOTf、双三氟甲基磺酸亚酰胺锂(LiTFSI)、水(H2O)和乙腈(ACN)组成的TMAOTf基杂化电解质,鉴于ACN对自由水的配位效应、Li+的溶剂化效应以及TFSI-的化学惰性,TMAOTf基杂化电解质展现出优良的非燃特性,且其电化学稳定窗口(3.35 V)远比目前所报道经典WIS电解质的要宽。进一步将这种杂化电解质与商业活性炭电极(YP-50F)所匹配,所构筑的水系超级电容器能够输出宽的工作电压窗口(2.5 V)、高的倍率性能(10A·g-1下的容量保持率为80%)、长的循环寿命(45,000次循环)和优异的低温性能(-20 oC下循环2000次的容量保留率为99.99%),克服了水系超级电容器电压窗口与循环寿命的冲突。因此,这种TMAOTf基复合水系电解质的设计不仅丰富了具有长循环寿命和高工作电压窗口水系超级电容器的类型,也证明了电解质杂化策略对构筑高性能储能器件的有效性,为碳中和目标的实现蓄势赋能。