[1] Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, 7: 12647.
[2] Simon P ,GoGotSi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[3] Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
[4] Palacín M.R, Simon P, Tarascon J.M. Nanomaterials for electrochemical energy storage: the Good and the bad[J]. Acta Chimica Slovenica, 2016, 63(3): 417-423.
[5] Shao W K(邵雯柯), Zhao L(赵雷), Wang Q F(王秋凡), et al. The study of asymmetric supercapacitor based on WO3/carbon cloth[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 1-11.
[6] Conway B.E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage[J]. Journal of Power Sources,1997, 66: 1-14.
[7] Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage[J]. Journal of The Electrochemical Society, 1991, 138(6): 1539-1548.
[8] Jiang C C, Cao Y K, Xiao G Y, et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates[J]. RSC Advances, 2017, 7(13): 7531-7539.
[9] Liu B, Liu B Y, Wang Q F, et al. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10011-10017 .
[10] Yuvaraj S, Selvan R K, Lee Y S. An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries[J]. RSC Advances, 2016, 6(26): 21448-21474.
[11] Yao L L, Zhang L L, Liu Y X, et al. MnCo2O4 and CoMn2O4 octahedral nanocrystals synthesized via a one-step co-precipitation process and their catalytic properties in benzyl alcohol oxidation[J]. CrystEngComm, 2016, 18(46): 8887-8897.
[12] Wang H(万慧),Ying Z R(应宗荣), Liu X D(刘信东), et al. Preparation and electrochemical properties of attapulgite -supported nitrogen-doped carbon@NiCo2O4 composites for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(1): 28-35.
[13] Liu S, Hui K S, Kim K H, et al. Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors[J]. Journal of Materials Chemistry A, 2016, 4(21): 8061-8071.
[14] Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452.
[15] Gogotsi Y. What nano can do for energy storage[J]. ACS Nano, 2014, 8(6): 5369-5371.
[16] Zhang G Q, Lou X W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J]. Advanced Materials, 2013, 25(7): 976-979.
[17] Yu Z Y, Cheng Z X, Tai Z X, et al. Tuning the morphology of CO3O4 on Ni foam for supercapacitor application[J]. RSC Advances, 2016, 6(51): 45783-45790.
[18] Li M G, Yang W W, Huang Y R, et al. Hierarchical mesoporous CO3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors[J]. Science China - Materials, 2018, 61(9): 1167-1176.
[19] Gai Y S, Shang Y Y, Gong L Y, et al. A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors[J]. RSC Advances, 2017, 7(2): 1038-1044.
[20] Chuo H X, Gao H, Bu W B, et al. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(48): 20462-20469.
[21] Yang D W, Wang Y Q, Wang Q Y, et al. Preparation and supercapacitive properties of hierarchical ZnCo2O4@Ni3S2 core/shell nanowire arrays on Ni foam[J]. Materials Letters, 2018, 213: 222-226.
[22] Kang Q, Zhao J, Li X, et al. A single wire as all-inclusive fully functional supercapacitor[J]. Nano Energy, 2017, 32: 201-208.
[23] Deka Boruah B, Maji A, Misra A. Synergistic effect in the heterostructure of ZnCo2O4 and hydrogenated zinc oxide nanorods for high capacitive response[J]. Nanoscale, 2017, 9(27): 9411-9420. |