电化学(中英文) ›› 2022, Vol. 28 ›› Issue (11): 2219012. doi: 10.13208/j.electrochem.2219012
程浩然1,2, 马征1, 郭营军3, 孙春胜3, 李茜1, 明军1,2,*()
收稿日期:
2022-10-06
修回日期:
2022-10-19
出版日期:
2022-11-28
发布日期:
2022-11-28
Hao-Ran Cheng1,2, Zheng Ma1, Ying-Jun Guo3, Chun-Sheng Sun3, Qian Li1, Jun Ming1,2,*()
Received:
2022-10-06
Revised:
2022-10-19
Published:
2022-11-28
Online:
2022-11-28
Contact:
* Tel: (86-431)85262592, E-mail: jun.ming@ciac.ac.cn
摘要:
通过电解液分解在电极上形成的固体电解质界面(SEI)层被认为是影响电池性能的最重要因素。 然而,我们发现金属离子溶剂化结构也会影响其电极性能,尤其可以阐明许多SEI无法解释的实验现象。基于该综述,本文总结了金属离子溶剂化结构和衍生的金属离子去溶剂化行为的重要性,并建立了相应的界面模型以展示界面行为和电极性能之间的关系,并将其应用于不同的电极和电池体系。我们强调了电极界面离子/分子相互作用对电极性能的影响,该解释与以往基于SEI的解释不同。该综述为理解电池性能和指导电解液设计提供了一个新的视角。
程浩然, 马征, 郭营军, 孙春胜, 李茜, 明军. 影响电池性能的因素:金属离子溶剂化结构衍生的界面行为还是固体电解质界面膜?[J]. 电化学(中英文), 2022, 28(11): 2219012.
Hao-Ran Cheng, Zheng Ma, Ying-Jun Guo, Chun-Sheng Sun, Qian Li, Jun Ming. Which Factor Dominates Battery Performance: Metal Ion Solvation Structure-Derived Interfacial Behavior or Solid Electrolyte Interphase Layer?[J]. Journal of Electrochemistry, 2022, 28(11): 2219012.
[1] | Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33): 1800561. |
[2] | Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295. |
[3] | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
[4] | Wu Y Q, Xie L Q, Ming H, Guo Y J, Hwang J Y, Wang W X, He X M, Wang L M, Alshareef H N, Sun Y K, Ming J. An empirical model for the design of batteries with high energy density[J]. ACS Energy Lett., 2020, 5(3): 807-816. |
[5] | Markevich E, Salitra G, Aurbach D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Lett., 2017, 2(6): 1337-1345. |
[6] | Ruan D G, Chen M, Wen X Y, Li S Q, Zhou X G, Che Y X, Chen J K, Xiang W J, Li S L, Wang H, Liu X, Li W S. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive[J]. Nano Energy, 2021, 90: 106535. |
[7] | Su C C, He M N, Cai M, Shi J Y, Amine R, Rago N D, Guo J C, Rojas T, Ngo A T, Amine K. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries[J]. Nano Energy, 2022, 92: 106720. |
[8] | Tan L J, Chen S Q, Chen Y W, Fan J J, Ruan D G, Nian Q S, Chen L, Jiao S H, Ren X D. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality[J]. Angew. Chem. Int. Edit., 2022, 61(32): e202203693. |
[9] |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4417.
doi: 10.1021/cr030203g pmid: 15669157 |
[10] | Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate[J]. J. Electrochem. Soc., 2002, 149(12): A1578-A1583. |
[11] |
Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23): 11503-11618.
doi: 10.1021/cr500003w pmid: 25351820 |
[12] | Liang J Y, Zeng X X, Zhang X D, Wang P F, Ma J Y, Yin Y X, Wu X W, Guo Y G, Wan L J. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. J. Am. Chem. Soc., 2018, 140(22): 6767-6770. |
[13] | Wahyudi W, Cao Z, Kumar P, Li M L, Wu Y Q, Hedhili M N, Anthopoulos T D, Cavallo L, Li L J, Ming J. Phase inversion strategy to flexible freestanding electrode: Critical coupling of binders and electrolytes for high performance Li-S battery[J]. Adv. Funct. Mater., 2018, 28(34): 1802244. |
[14] | Fan J J, Dai P, Shi C G, Wen Y F, Luo C X, Yang J, Song C, Huang L, Sun S G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries[J]. Adv. Funct. Mater., 2021, 31(17): 2010500. |
[15] | Hou L P, Yao N, Xie J, Shi P, Sun S Y, Jin C B, Chen C M, Liu Q B, Li B Q, Zhang X Q, Zhang Q. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries[J]. Angew. Chem. Int. Edit., 2022, 61(20): e202201406. |
[16] | Shin W, Manthiram A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angew. Chem. Int. Edit., 2022, 61(13): e202115909. |
[17] | Xing L D, Zheng X W, Schroeder M, Alvarado J, Cresce A V, Xu K, Li Q S, Li W S. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Acc. Chem. Res., 2018, 51(2): 282-289. |
[18] | Niu C J, Liu D Y, Lochala J A, Anderson C S, Cao X, Gross M E, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. |
[19] |
Shadike Z, Lee H, Borodin O, Cao X, Fan X L, Wang X L, Lin R Q, Bak S M, Ghose S, Xu K, Wang C S, Liu J, Xiao J, Yang X Q, Hu E Y. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nat. Nanotechnol., 2021, 16(5): 549-554.
doi: 10.1038/s41565-020-00845-5 pmid: 33510453 |
[20] | Kim M S, Zhang Z W, Rudnicki P E, Yu Z A, Wang J, Y Wang H S, Oyakhire S T, Chen Y L, Kim S C, Zhang W B, Boyle D T, Kong X, Xu R, Huang Z J, Huang W, Bent S F, Wang L W, Qin J, Bao Z N, Cui Y. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nat. Mater., 2022, 21(4): 445-454. |
[21] | Wang H S, Yu Z, Kong X, Kim S C, Boyle D T, Qin J, Bao Z N, Cui Y. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616. |
[22] | Fong R, Vonsacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. J. Electrochem. Soc., 1990, 137(7): 2009-2013. |
[23] | Cheng M, Tang W P, Li Y, Zhu K J. Study on compositions and changes of SEI-film of Li2MnO3 positive material during the cycles[J]. Catal. Today, 2016, 274: 116-122. |
[24] |
Hope M A, Rinkel B L D, Gunnarsdottir A B, Marker K, Menkin S, Paul S, Sergeyev I V, Grey C P. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nat. Commun., 2020, 11(1): 2224.
doi: 10.1038/s41467-020-16114-x pmid: 32376916 |
[25] | Zhao F P, Zhang S M, Li Y G, Sun X L. Emerging characterization techniques for electrode interfaces in sulfide-based all-solid-state lithium batteries[J]. Small Str-uctures, 2021, 3(1): 2100146. |
[26] |
Zhou Y F, Su M, Yu X F, Zhang Y Y, Wang J G, Ren X D, Cao R G, Xu W, Baer D R, Du Y G, Borodin O, Wang Y T, Wang X L, Xu K, Xu Z J, Wang C M, Zhu Z H. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nat. Nanotechnol., 2020, 15(3): 224-230.
doi: 10.1038/s41565-019-0618-4 pmid: 31988500 |
[27] | Andersson A M, Henningson A, Siegbahn H, Jansson U, Edström K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy[J]. J. Power Sources, 2003, 119: 522-527. |
[28] | Lu P, Harris S J. Lithium transport within the solid electrolyte interphase[J]. Electrochem. Commun., 2011, 13(10): 1035-1037. |
[29] | Xu H Y, Li Z P, Liu T C, Han C, Guo C, Zhao H, Li Q, Lu J, Amine K, Qiu X P. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode[J]. Angew. Chem. Int. Edit., 2022, 61(30): e202202894. |
[30] |
Li Y Z, Li Y B, Pei A L, Yan K, Sun Y M, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
doi: 10.1126/science.aam6014 pmid: 29074771 |
[31] |
Zhang Z W, Li Y Z, Xu R, Zhou W J, Li Y B, Oyakhire S T, Wu Y C, Xu J W, Wang H S, Yu Z A, Boyle D T, Huang W, Ye Y S, Chen H, Wan J Y, Bao Z N, Chiu W, Cui Y. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70.
doi: 10.1126/science.abi8703 pmid: 34990230 |
[32] | Cheng H R, Sun Q J, Li L L, Zou Y G, Wang Y Q, Cai T, Zhao F, Liu G, Ma Z, Wahyudi W, Li Q, Ming J. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Lett., 2022, 7(1): 490-513. |
[33] | Ming J, Cao Z, Wahyudi W, Li M L, Kumar P, Wu Y Q, Hwang J Y, Hedhili M N, Cavallo L, Sun Y K, Li L J. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases[J]. ACS Energy Lett., 2018, 3(2): 335-340. |
[34] |
Ming J, Cao Z, Wu Y Q, Wahyudi W, Wang W X, Guo X R, Cavallo L, Hwang J Y, Shamim A, Li L J, Sun Y K, Alshareef H N. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Lett., 2019, 4(11): 2613-2622.
doi: 10.1021/acsenergylett.9b01441 |
[35] | Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions[J]. Electrochem. Solid State Lett., 2003, 6(1): A13-A15. |
[36] | Xu K. “Charge-transfer” process at graphite/electrolyte in-terface and the solvation sheath structure of Li+ in nonaqueous electrolytes[J]. J. Electrochem. Soc., 2007, 154(3): A162-A167. |
[37] | Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chem. Commun., 2013, 49(95): 11194-11196. |
[38] |
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J. Am. Chem. Soc., 2014, 136(13): 5039-5046.
doi: 10.1021/ja412807w pmid: 24654781 |
[39] |
Ren X D, Gao P Y, Zou L F, Jiao S H, Cao X, Zhang X H, Jia H, Engelhard M H, Matthews B E, Wu H P, Lee H, Niu C J, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(46): 28603-28613.
doi: 10.1073/pnas.2010852117 pmid: 33144505 |
[40] | Cao X, Gao P Y, Ren X D, Zou L F, Engelhard M H, Matthews B E, Hu J T, Niu C J, Liu D Y, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(9): e2020357118. |
[41] | Liu G, Sun Q J, Li Q, Zhang J L, Ming J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges[J]. Energy & Fuels, 2021, 35(13): 10405-10427. |
[42] | Sun Q J, Cao Z, Zhang J L, Cheng H R, Zhang J, Li Q, Ming H, Liu G, Ming J. Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries[J]. Adv. Funct. Mater., 2021, 31(22): 2009122. |
[43] | Wahyudi W, Ladelta V, Tsetseris L, Alsabban M M, Guo X R, Yengel E, Faber H, Adilbekova B, Seitkhan A, Emwas A H, Hedhili M N, Li L J, Tung V, Hadjichristidis N, Anthopoulos T D, Ming J. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries[J]. Adv. Funct. Mater., 2021, 31(23): 2101593. |
[44] | Liu G, Cao Z, Wang P, Ma Z, Zou Y G, Sun Q J, Cheng H R, Cavallo L, Li S Y, Li Q, Ming J. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Adv. Sci., 2022, 9(26): 2201893. |
[45] | Tian Z N, Zou Y G, Liu G, Wang Y Z, Yin J, Ming J, Alshareef H N. Electrolyte solvation structure design for sodium ion batteries[J]. Adv. Sci., 2022, 9(22): 2201207. |
[46] | Wahyudi W, Guo X R, Ladelta V, Tsetseris L, Nugraha M I, Lin Y B, Tung V, Hadjichristidis N, Li Q, Xu K, Ming J, Anthopoulos T D. Hitherto unknown solvent and anion pairs in solvation structures reveal new insights into high-performance lithium-ion batteries[J]. Adv. Sci., 2022, 9(28): 2202405. |
[47] | Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102. |
[48] | Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548-1558. |
[49] | Deng W, Dai W H, Zhou X F, Han Q G, Fang W, Dong N, He B Y, Liu Z P. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 Wh·kg-1 lithium metal battery[J]. ACS Energy Lett., 2021, 6(1): 115-123. |
[50] | Jie Y L, Liu X J, Lei Z W, Wang S Y, Chen Y W, Huang F Y, Cao R G, Zhang G Q, Jiao S H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angew. Chem. Int. Edit., 2020, 59(9): 3505-3510. |
[51] | Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charg-ing batteries[J]. Angew. Chem. Int. Edit., 2021, 60(7): 3402-3406. |
[52] | Li F, He J, Liu J D, Wu M G, Hou Y Y, Wang H P, Qi S H, Liu Q H, Hu J W, Ma J M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angew. Chem. Int. Edit., 2021, 60(12): 6600-6608. |
[53] |
Ming J, Cao Z, Li Q, Wahyudi W, Wang W X, Cavallo L, Park K J, Sun Y K, Alshareef H N. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Lett., 2019, 4(7): 1584-1593.
doi: 10.1021/acsenergylett.9b00822 |
[54] | Xu K, Lee U, Zhang S S, Jow T R. Graphite/electrolyte interface formed in LiBOB-based electrolytes-II. Potential dependence of surface chemistry on graphitic anodes[J]. J. Electrochem. Soc., 2004, 151(12): A2106-A2112. |
[55] | Yao W H, Zhang Z R, Gao J, Li J, Xu J, Wang Z C, Yang Y. Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Energy Environ. Sci., 2009, 2(10): 1102-1108. |
[56] | Nie M Y, Chalasani D, Abraham D P, Chen Y J, Bose A, Lucht B L. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. J. Phys. Chem. C, 2013, 117(3): 1257-1267. |
[57] | Ping P, Xia X, Wang Q S, Sun J H, Dahn J R. The effect of trimethoxyboroxine on some positive electrodes for Li-ion batteries[J]. J. Electrochem. Soc., 2013, 160(3): A426-A429. |
[58] | Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model[J]. J. Electrochem. Soc., 1979, 126(12): 2047-2051. |
[59] | Peled E. Film forming reaction at the lithium/electrolyte interface[J]. J. Power Sources, 1983, 9(3-4): 253-266. |
[60] | Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J. Electrochem. Soc., 1997, 144(8): L208-L210. |
[61] | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22: 587-603. |
[62] | Aurbach D, Levi M D, Levi E, Schechter A. Failure and stabilization mechanisms of graphite electrodes[J]. J. Phys. Chem. B, 1997, 101(12): 2195-2206. |
[63] | Li T, Balbuena P B. Theoretical studies of the reduction of ethylene carbonate[J]. Chem. Phys. Lett, 2000, 317(3-5): 421-429. |
[64] | Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochim. Acta, 2002, 47(9): 1423-1439. |
[65] | Edström K, Gustafsson T, Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochim. Acta, 2004, 50(2-3): 397-403. |
[66] | Blyth R I R, Buqa H, Netzer F P, Ramsey M G, Besenhard J O, Golob P, Winter M. XPS studies of graphite electrode materials for lithium ion batteries[J]. Appl. Surf. Sci., 2000, 167(1-2): 99-106. |
[67] |
Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
doi: 10.1021/acsnano.8b05038 pmid: 30226745 |
[68] | Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2): 1379-1394. |
[69] |
Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat. Commun., 2015, 6: 7436.
doi: 10.1038/ncomms8436 pmid: 26081242 |
[70] | Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy Environ. Sci., 2016, 9(6): 1955-1988. |
[71] | Xia J, Dahn J R. Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives[J]. J. Power Sources, 2016, 324: 704-711. |
[72] | Xia J, Nelson K J, Lu Z H, Dahn J R. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. J. Power Sources, 2016, 329: 387-397. |
[73] | Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 17012. |
[74] | Wang X S, Mai W C, Guan X C, Liu Q, Tu W Q, Li W S, Kang F Y, Li B H. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy Environ. Mater., 2020, 4(3): 284-292. |
[75] | Yamada Y, Koyama Y, Abe T, Ogumi Z. Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes[J]. J. Phys. Chem. C, 2009, 113(20): 8948-8953. |
[76] | Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion[J]. J. Phys. Chem. C, 2010, 114(26): 11680-11685. |
[77] | Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angew. Chem. Int. Ed. Engl., 2021, 60(7): 3402-3406. |
[78] | Zhang J, Cao Z, Zhou L, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Model-based design of graphite-compatible electrolytes in potassium-ion batteries[J]. ACS Energy Lett., 2020, 5(8): 2651-2661. |
[79] | Liu G, Cao Z, Zhou L, Zhang J, Sun Q J, Hwang J Y, Cavallo L, Wang L M, Sun Y K, Ming J. Additives engineered nonflammable electrolyte for safer potassium ion batteries[J]. Adv. Funct. Mater., 2020, 30(43): 2001934. |
[80] |
Li Q, Cao Z, Liu G, Cheng H R, Wu Y Q, Ming H, Park G T, Yin D M, Wang L M, Cavallo L, Sun Y K, Ming J. Electrolyte chemistry in 3D metal oxide nanorod arrays deciphers lithium dendrite-free plating/stripping behaviors for high-performance lithium batteries[J]. J. Phys. Chem. Lett., 2021, 12(20): 4857-4866.
doi: 10.1021/acs.jpclett.1c01049 pmid: 34002601 |
[81] | Li Q, Cao Z, Wahyudi W, Liu G, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Alshareef H N, Ming J. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Lett., 2021, 6(1): 69-78. |
[82] | Zhang J, Cao Z, Zhou L, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Model-based design of stable electrolytes for potassium ion batteries[J]. ACS Energy Lett., 2020, 5(10): 3124-3131. |
[83] |
Zhou L, Cao Z, Zhang J, Sun Q J, Wu Y Q, Wahyudi W, Hwang J Y, Wang L M, Cavallo L, Sun Y K, Alshareef H N, Ming J. Engineering sodium-ion solvation structure to stabilize sodium anodes: Universal strategy for fast-charging and safer sodium-ion batteries[J]. Nano Lett., 2020, 20(5): 3247-3254.
doi: 10.1021/acs.nanolett.9b05355 pmid: 32319776 |
[84] | Zhou L, Cao Z, Zhang J, Cheng H R, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries[J]. Adv. Mater., 2021, 33(8): 2005993. |
[85] | Zhou L, Cao Z, Wahyudi W, Zhang J, Hwang J Y, Cheng Y, Wang L M, Cavallo L, Anthopoulos T, Sun Y K, Alshareef H N, Ming J. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Lett., 2020, 5(3): 766-776. |
[86] | Sun Q J, Cao Z, Ma Z, Zhang J L, Cheng H R, Guo X R, Park G T, Li Q, Xie E Q, Cavallo L, Sun Y-K, Ming J. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries[J]. ACS Energy Lett., 2022, 7(10): 3545-3556. |
[87] | Sun Q J, Cao Z, Ma Z, Zhang J L, Wahyudi W, Cai T, Cheng H R, Li Q, Kim H, Xie E Q, Cavallo L, Sun Y K, Ming J. Discerning roles of interfacial model and solid electrolyte interphase layer for stabilizing antimony anode in lithium-ion batteries[J]. ACS Materials Lett., 2022, 4(11): 2233-2243. |
[88] |
Sun Q J, Cao Z, Ma Z, Zhang J L, Wahyudi W, Liu G, Cheng H R, Cai T, Xie E Q, Cavallo L, Li Q, Ming J. Interfacial and interphasial chemistry of electrolyte components to invoke high-performance antimony anodes and non-flammable lithium-ion batteries[J]. Adv. Funct. Mater., doi: 10.1002/adfm.202210292.
doi: 10.1002/adfm.202210292 URL |
[89] |
Zou Y G, Shen Y B, Wu Y Q, Xue H J, Guo Y J, Liu G, Wang L M, Ming J. A designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis[J]. Chem.-Eur. J., 2020, 26(35): 7930-7936.
doi: 10.1002/chem.202001038 pmid: 32337745 |
[90] | Liao X L, Huang Q M, Mai S W, Wang X S, Xu M Q, Xing L D, Liao Y H, Li W S. Self-discharge suppression of 4.9 V LiNi0.5Mn1.5O4 cathode by using tris(trimethylsilyl)borate as an electrolyte additive[J]. J. Power Sources, 2014, 272: 501-507. |
[91] | Röser S, Lerchen A, Ibing L, Cao X, Kasnatscheew J, Glorius F, Winter M, Wagner R. Highly effective solid electrolyte interphase-forming electrolyte additive enabling high voltage lithium-ion batteries[J]. Chem. Mater., 2017, 29(18): 7733-7739. |
[92] | Ma L, Ellis L, Glazier S L, Ma X W, Liu Q Q, Li J, Dahn J R. LiPO2F2 as an electrolyte additive in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells[J]. J. Electrochem. Soc., 2018, 165(5): A891-A899. |
[93] | Zou Y G, Cao Z, Zhang J, Wahyudi W, Wu Y Q, Liu G, Li Q, Cheng H R, Zhang D Y, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Ming J. Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries[J]. Adv. Mater., 2021, 33(43): 2102964. |
[94] |
Ming J, Guo J, Xia C, Wang W X, Alshareef H N. Zinc-ion batteries: materials, mechanisms, and applications[J]. Mat. Sci. Eng. R., 2019, 135: 58-84.
doi: 10.1016/j.mser.2018.10.002 |
[1] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[2] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[3] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[4] | 杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001-. |
[5] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[6] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[7] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
[8] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[9] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[10] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[11] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[12] | 王振宇, 高学平. 金属和合金作为锂-硫电池硫正极催化载体[J]. 电化学(中英文), 2023, 29(4): 2217001-. |
[13] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[14] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[15] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||