欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 电化学获奖人专辑 •    

生物质基碳负极结构调控工程实现高倍率双离子电池

周锐, 刘瑞, 李云诺, 蒋思捷, 井甜甜, 徐艳松*, 曹菲菲*   

  1. a华中农业大学化学学院,湖北 武汉 430070
  • 发布日期:2025-06-16
  • 通讯作者: 徐艳松, 曹菲菲 E-mail:xuyansong@mail.hzau.edu.cn;caofeifei@mail.hzau.edu.cn
  • 作者简介:周锐, 刘瑞, 李云诺, 蒋思捷, 井甜甜, 徐艳松, 曹菲菲

Structure Regulation Engineering for Biomass-derived Carbon Anodes Enabling High-rate Dual-ion Batteries

Rui Zhoua, Rui Liua, Yun-Nuo Lia, Si-Jie Jianga, Tian-Tian Jinga, Yan-Song Xua,*, Fei-Fei Caoa,*   

  1. a R. Zhou, R. Liu, T.-T. Jing, Y.-N. Li, S.-J. Jiang, Y.-S. Xu, Prof. F.-F. Cao College of Chemistry, Huazhong Agricultural University Wuhan 430070, Hubei, China
  • Online:2025-06-16
  • Contact: Yan-Song Xu, Fei-Fei Cao E-mail:xuyansong@mail.hzau.edu.cn;caofeifei@mail.hzau.edu.cn
  • About author:Rui Zhou, Rui Liu, Yun-Nuo Li, Si-Jie Jiang, Tian-Tian Jing, Yan-Song Xu, Fei-Fei Cao

摘要: 双离子电池(DIBs)通常使用碳基材料作为电极,具有工作电压高、潜在成本低、环境友好等优点。与二次电池传统的“摇椅式”工作机制不同,DIBs具有独特的工作机制,在电化学反应过程中,阳离子和阴离子分别在负极和正极参与容量贡献。在高工作电压下(>4.8 V),阴离子嵌入石墨正极具有优异的反应动力学。然而,Li+在负极侧往往扩散速率较为缓慢,导致正极和负极之间的动力学失配,严重制约了DIBs的发展。本文通过微观结构调控策略制备了毛竹衍生碳(PEC),该策略有效地调控了PEC丰富的短程有序石墨微畴和无序非晶区,并具有独特的分级纳米孔结构。其纳米孔的孔径分布主要集中在0.5-5 nm,为Li+提供了合适的快速传输通道,在300 mA·g-1电流密度下达到了436 mAh·g-1的高可逆容量和优异的倍率性能(在3 A·g-1时保持了231 mAh·g-1的高容量)。组装的双碳PEC-500||石墨全电池在10 C倍率下具有114 mAh·g-1的容量,循环3000圈后具有96%的容量保持率,同时,全电池在50 C倍率测试中仍能够保持74 mAh·g-1的容量,表现出优异的倍率性能。

关键词: 双离子电池, 生物质硬碳, 结构调控, 高工作电压, 高倍率

Abstract: Dual-ion batteries (DIBs), which usually using carbon-based materials as electrodes, showing advantages in high operating voltage, potential low cost, and environmental friendliness. Different from conventional “rocking chair” of secondary batteries, DIBs performed a unique working mechanism, which employ both cation and anion take part in capacity contribution at anode and cathode, respectively, during electrochemical reactions. Graphite has been identified a suitable cathode material for anion intercalation at high voltage (>4.8 V) with fast reaction kinetics. However, the development of DIBs is being hindered by dynamic mismatch between cathode and anode due to sluggish Li+ diffusion at high rate. Herein, we prepared phyllostachys edulis derived carbon (PEC) through micro structure regulation strategy, which effectively tailored the rich short-range ordered graphite microdomains and disordered amorphous regions, as well as a unique nano-pore hierarchical structure. The pore size distribution of nano-pores is concentrated in 0.5-5 nm, providing suitable channels for rapid Li+ transportation, achieving a high capacity of 436 mAh·g-1 at 300 mA·g-1 and excellent rate performance (maintaining a high capacity of 231 mAh·g-1 at 3 A·g-1). The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g-1 at 10 C with 96% capacity retention after 3000 cycles and outstanding rate capability, providing 74 mAh·g-1 at 50 C.

Key words: Dual ion battery, Biomass hard carbon, Structural regulation, High operating voltage, High rate