欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 综述 •    

锌–碘电池的挑战与机遇:从电极材料设计到储能机理

刘榕麒a,商文硕a,张进涛a,*   

  1. 胶体与界面化学教育部重点实验室,山东大学化院与化工学院,山东 济南 250100
  • 发布日期:2025-06-16
  • 通讯作者: 张进涛 E-mail:jtzhang@sdu.edu.cn
  • 作者简介:刘榕麒,商文硕,张进涛

Bridging Materials and Energy Storage Mechanisms in Zn–I2 Batteries

Rongqi Liua, Wenshuo Shanga, Jintao Zhanga,*   

  1. Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering Department Shandong University Jinan 250100, China
  • Online:2025-06-16
  • Contact: Jintao Zhang E-mail:jtzhang@sdu.edu.cn
  • About author:Rongqi Liu, Wenshuo Shang, Jintao Zhang

摘要: 锌–碘(Zn–I2)电池因其高能量密度和环境友好性而备受关注,成为一种可持续的储能解决方案。本综述系统总结了Zn- I2电池在三个关键领域的最新研究进展:正极材料工程、锌负极稳定性调控和电解液设计。在正极方面,通过将碘锚定于导电基体上,可有效抑制多碘阴离子的穿梭效应,并加速I/I2的氧化还原反应动力学。借助先进的原位表征技术,实现了对多碘中间体(I3-/I5-)的实时监测,深入揭示了电解质与电极间的相互作用,并为功能性添加剂的设计提供了理论依据,有效抑制了穿梭效应。在锌负极方面,近年来的创新手段如界面保护层的构建、三维导电骨架的引入及针对性的电解液添加剂的开发,在抑制锌枝晶生长和副反应方面取得了显著成效,从而提升了循环稳定性和库仑效率。然而,要在实际应用条件下实现长期可逆性和结构完整性仍面临诸多挑战。未来的研究应聚焦于协同电解液体系的构建和集成化电极结构的设计,以在化学稳定性、离子传输能力与机械强度之间实现协同优化,推动下一代Zn–I2电池技术的应用。特别是,开发具有协同增效作用的多功能电解质添加剂,以及构建兼顾力学强度与离子传输动力学的复合电极结构,将在提升Zn–I2电池性能和深化储能机理理解方面发挥关键作用。

关键词: 锌碘电池, 界面化学, 枝晶生长, 穿梭效应

Abstract: Zinc–iodine (Zn–I2) batteries have emerged as a compelling candidate for large-scale energy storage, driven by the growing demand for safe, cost-effective, and sustainable alternatives to conventional systems. Benefiting from the inherent advantages of aqueous electrolytes and zinc metal anodes, including high ionic conductivity, low flammability, natural abundance, and high volumetric capacity, Zn–Ibatteries offer significant potential for grid-level deployment. This review provides a comprehensive overview of recent progress in three critical domains: positive-electrode engineering, zinc anode stabilization, and in situ characterization methods. On the cathode side, anchoring iodine to conductive matrices effectively mitigates polyiodide shuttling and enhances the kinetics of I/I2 conversion. Advanced in situ characterization has enabled real-time monitoring of polyiodide intermediates (I3/I5), offering new insights into electrolyte–electrode interactions and guiding the development of functional additives to suppress shuttle effects. For the zinc anode, innovations such as protective interfacial layers, three-dimensional host frameworks, and targeted electrolyte additives have shown efficacy in suppressing dendrite growth and side reactions, thus improving cycling stability and coulombic efficiency. Despite these advances, challenges remain in achieving long-term reversibility and structural integrity under practical conditions. Future directions include the design of synergistic electrolyte systems and integrated electrode architectures that simultaneously optimize chemical stability, ion transport, and mechanical durability for next-generation Zn–I2 battery technologies.

Key words: Zinc-iodine battery, Interface chemistry, Dendrite growth, Shuttle effect