电化学(中英文) ›› 2023, Vol. 29 ›› Issue (2): 2215001. doi: 10.13208/j.electrochem.2215001
所属专题: “下一代二次电池”专题文章; “电催化和燃料电池”专题文章
收稿日期:
2022-05-24
修回日期:
2022-06-08
接受日期:
2022-06-22
出版日期:
2023-02-28
发布日期:
2022-06-24
Bo Wena, Zhuo Zhua, Fu-Jun Lia,b,*()
Received:
2022-05-24
Revised:
2022-06-08
Accepted:
2022-06-22
Published:
2023-02-28
Online:
2022-06-24
Contact:
*Tel: (86-22)23509571, E-mail address: 摘要:
非质子锂-氧气电池具有高理论能量密度,在过去几年里受到了广泛关注。然而,动力学缓慢的氧还原反应(ORR)/氧析出反应(OER)和放电产物Li2O2导电性差导致锂-氧气电池过电位大,放电容量有限,循环寿命短。开发有效的锂-氧气电池正极催化剂可以调控放电与充电过程中Li2O2的形成和可逆分解,减小放电/充电极化。尽管提升ORR/OER动力学的正极催化剂已经取得了一系列重要进展,但是对正极在放电和充电中Li2O2生成和分解过程的理解依然是不足的。这篇综述聚焦于锂-氧气电池正极催化剂的最新进展,总结了催化剂与Li2O2生成/分解的作用关系,本文首先指出了锂-氧气电池正极面临的科学问题,包括动力学缓慢的ORR/OER过程和导电性差的反应产物Li2O2钝化电极,并提出了锂-氧气电池正极设计准则。通过对最近报道的正极催化剂进行分类讨论,明晰调控催化剂活性位点策略,理解在正极反应过程中不同催化剂的活性位点对反应中间产物的吸附状态,以及对Li2O2生成和分解的作用机制,评估了不同类型正极催化剂在锂-氧气电池的潜在应用。最后总结了锂-氧气电池正极催化剂依然存在的挑战,例如阐明正极催化剂活性位点与附着的Li2O2界面在充放电过程中的变化,并揭示了设计高效正极催化剂的决定因素,展望了通过光/磁协助、负极保护以及电解液设计等策略,进一步推动锂-氧气电池的应用。
温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001.
Bo Wen, Zhuo Zhu, Fu-Jun Li. Advances and Challenges on Cathode Catalysts for Lithium-Oxygen Batteries[J]. Journal of Electrochemistry, 2023, 29(2): 2215001.
[1] |
Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chem. Rev., 2020, 120(14): 6558-6625.
doi: 10.1021/acs.chemrev.9b00545 pmid: 32090540 |
[2] |
Zhang P, Ding M J, Li X X, Li C X, Li Z Q, Yin L W. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries[J]. Adv. Energy Mater., 2020, 10(40): 2001789.
doi: 10.1002/aenm.v10.40 URL |
[3] |
Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. J. Electrochem. Soc., 1996, 143(1): 1-5.
doi: 10.1149/1.1836378 |
[4] |
Kwak W J, Rosy, Sharon D, Xia C, Kim H, Johnson L R, Bruce P G, Nazar L F, Sun Y K, Frimer A A, Noked M, Freunberger S A, Aurbach D. Lithium-oxygen batteries and related systems: Potential, status, and future[J]. Chem. Rev., 2020, 120(14): 6626-6683.
doi: 10.1021/acs.chemrev.9b00609 URL |
[5] |
Chen K, Yang D Y, Huang G, Zhang X B. Lithium-air batteries: Air-electrochemistry and anode stabilization[J]. Acc. Chem. Res., 2021, 54(3): 632-641.
doi: 10.1021/acs.accounts.0c00772 URL |
[6] |
Li F J, Chen J. Mechanistic evolution of aprotic lithium-oxygen batteries[J]. Adv. Energy Mater., 2017, 7(24): 1602934.
doi: 10.1002/aenm.v7.24 URL |
[7] | Lv Q L, Zhu Z, Ni Y X, Geng J R, Li F J. Spin-state manipulation of two-dimensional metal-organic framework with enhanced metal-oxygen covalency for lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202114293. |
[8] |
Hou Y, Wang J, Liu J Q, Hou C X, Xiu Z H, Fan Y Q, Zhao L L, Zhai Y J, Li H Y, Zeng J, Gao X, Zhou S, Li D W, Li Y, Dang F, Liang K, Chen P, Li C M, Zhao D Y, Kong B. Interfacial super-assembled porous CeO2/C frameworks featuring efficient and sensitive decomposing Li2O2 for smart Li-O2 batteries[J]. Adv. Energy Mater., 2019, 9(40): 1901751.
doi: 10.1002/aenm.v9.40 URL |
[9] |
Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries[J]. J. Am. Chem. Soc., 2020, 142(39): 16776-16786.
doi: 10.1021/jacs.0c07317 URL |
[10] |
Cai Y C, Zhang Q, Lu Y, Hao Z M, Ni Y X, Chen J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(49): 25973-25980.
doi: 10.1002/anie.v60.49 URL |
[11] |
Zhang X, Xie Z J, Zhou Z. Recent progress in protecting lithium anodes for Li-O2 batteries[J]. ChemElectroChem, 2019, 6 (7): 1969-1977.
doi: 10.1002/celc.201900081 |
[12] |
Ma S Y, Yao H C, Li Z J, Liu Q C. Tuning the nucleation and decomposition of Li2O2 by fluorine-doped carbon vesicles towards high performance Li-O2 batteries[J]. J. Energy Chem., 2022, 70: 614-622.
doi: 10.1016/j.jechem.2022.03.007 URL |
[13] | Li Y, Zhang R, Chen B, Wang N, Sha J W, Ma L Y, Zhao D D, Liu E Z, Zhu S, Shi C S, Zhao N Q. Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries[J]. Energy Storage Mater., 2022, 44: 285-295. |
[14] | Xu H Y, Zheng R X, Du D Y, Ren L F, Li R J, Wen X J, Zhao C, Shu C Z. V2C Mxene enriched with-O termination as high-efficiency electrocatalyst for lithium-oxygen battery[J]. Appl. Mater. Today, 2022, 27: 101464. |
[15] |
Xia H, Xie Q F, Tian Y H, Chen Q, Wen M, Zhang J L, Wang Y, Tang Y P, Zhang S Q. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries[J]. Nano Energy, 2021, 84: 105877.
doi: 10.1016/j.nanoen.2021.105877 URL |
[16] |
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11: 19-29.
doi: 10.1038/nmat3191 |
[17] |
Aurbach D, Mccloskey B D, Nazar L F, Bruce P G. Advances in understanding mechanisms underpinning lithium-air batteries[J]. Nat. Energy, 2016, 1: 16128.
doi: 10.1038/nenergy.2016.128 |
[18] |
Laoire C O, Mukerjee S, Abraham K M, Plichta E J, Hendrickson M A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications[J]. J. Phys. Chem. C, 2009, 113(46): 20127-20134.
doi: 10.1021/jp908090s URL |
[19] | Abraham K. A brief history of non-aqueous metal-air batteries[J]. ECS Trans., 2008, 3(42): 67. |
[20] |
Lyu Z Y, Yang L J, Luan Y P, Wang X R, Wang L J, Hu Z H, Lu J P, Xiao S N, Zhang F, Wang X Z, Huo F W, Huang W, Hu Z, Chen W. Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design[J]. Nano Energy, 2017, 36: 68-75.
doi: 10.1016/j.nanoen.2017.04.022 URL |
[21] |
Johnson L, Li C M, Liu Z, Chen Y H, Freunberger S A, Ashok P C, Praveen B B, Dholakia K, Tarascon J M, Bruce P G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries[J]. Nat. Chem., 2014, 6(12): 1091-1099.
doi: 10.1038/nchem.2101 pmid: 25411888 |
[22] |
Oh S H, Black R, Pomerantseva E, Lee J H, Nazar L F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nat. Chem., 2012, 4(12): 1004-1010.
doi: 10.1038/nchem.1499 |
[23] |
Wang D, Mu X W, He P, Zhou H S. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects[J]. Mater. Today, 2019, 26: 87-99.
doi: 10.1016/j.mattod.2019.01.016 |
[24] |
Feng N N, He P, Zhou H S. Critical challenges in rechargeable aprotic Li-O2 batteries[J]. Adv. Energy Mater., 2016, 6(9): 1502303.
doi: 10.1002/aenm.201502303 URL |
[25] | Zheng R X, Shu C Z, Chen X F, Yan Y, He M, Du D Y, Ren L F, Hu A J, Long J P. Unique intermediate adsorption enabled by anion vacancies in metal sulfide embedded MXene nanosheets overcoming kinetic barriers of oxygen electrode reactions in lithium-oxygen batteries[J]. Energy Storage Mater., 2021, 40: 41-50. |
[26] |
Sun B, Guo L M, Ju Y H, Munroe P, Wang E, Peng Z Q, Wang G X. Unraveling the catalytic activities of ruthenium nanocrystals in high performance aprotic Li-O2 batteries[J]. Nano Energy, 2016, 28: 486-494.
doi: 10.1016/j.nanoen.2016.08.057 URL |
[27] |
Wang Y, Liang Z J, Zou Q L, Cong G T, Lu Y C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2016, 120(12): 6459-6466.
doi: 10.1021/acs.jpcc.6b00984 URL |
[28] |
Lodge A W, Lacey M J, Fitt M, Garcia-Araez N, Owen J R. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries[J]. Electrochim. Acta, 2014, 140: 168-173.
doi: 10.1016/j.electacta.2014.05.026 URL |
[29] |
Black R, Lee J H, Adams B, Mims C A, Nazar L F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2013, 52(1): 392-396.
doi: 10.1002/anie.201205354 pmid: 23161778 |
[30] |
Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G. Rechargeable Li2O2 electrode for lithium batteries[J]. J. Am. Chem. Soc., 2006, 128(4): 1390-1393.
pmid: 16433559 |
[31] |
Jiang H R, Zhao T S, Shi L, Tan P, An L. First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalysts in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. C, 2016, 120(12): 6612-6618.
doi: 10.1021/acs.jpcc.6b00136 URL |
[32] |
Wong R A, Dutta A, Yang C Z, Yamanaka K, Ohta T, Nakao A, Waki K, Byon H R. Structurally tuning Li2O2 by controlling the surface properties of carbon electrodes: Implications for Li-O2 batteries[J]. Chem. Mater., 2016, 28(21): 8006-8015.
doi: 10.1021/acs.chemmater.6b03751 URL |
[33] |
Qian Z Y, Guo R, Ma Y L, Li C J, Du L, Wang Y, Du C Y, Huo H, Yin G P. Se-doped carbon as highly stable cathode material for high energy nonaqueous Li-O2 batteries[J]. Chem. Eng. Sci., 2020, 214: 115413.
doi: 10.1016/j.ces.2019.115413 URL |
[34] |
Zhao T, Yao Y, Yuan Y F, Wang M L, Wu F, Amine K, Lu J. A universal method to fabricating porous carbon for Li-O2 battery[J]. Nano Energy, 2021, 82: 105782.
doi: 10.1016/j.nanoen.2021.105782 URL |
[35] |
Mccloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. J. Phys. Chem. Lett., 2012, 3(8): 997-1001.
doi: 10.1021/jz300243r URL |
[36] |
Gallant B M, Mitchell R R, Kwabi D G, Zhou J G, Zuin L, Thompson C V, Shao-Horn Y. Chemical and morphological changes of Li-O2 battery electrodes upon cycling[J]. J. Phys. Chem. C, 2012, 116(39): 20800-20805.
doi: 10.1021/jp308093b URL |
[37] |
Nasybulin E N, Xu W, Mehdi B L, Thomsen E, Engelhard M H, Massé R C, Bhattacharya P, Gu M, Bennett W, Nie Z M, Wang C M, Browning N D. Formation of interfacial layer and long-term cyclability of Li-O2 batteries[J]. ACS Appl. Mater. Inter., 2014, 6(16): 14141-14151.
doi: 10.1021/am503390q URL |
[38] |
Itkis D M, Semenenko D A, Kataev E Y, Belova A I, Neudachina V S, Sirotina A P, Hävecker M, Teschner D, Knop-Gericke A, Dudin P, Barinov A, Goodilin E A, Shao-Horn Y, Yashina L V. Reactivity of carbon in lithium-oxygen battery positive electrodes[J]. Nano Lett., 2013, 13(10): 4697-4701.
doi: 10.1021/nl4021649 pmid: 24004050 |
[39] |
Shen Z Z, Zhou C, Wen R, Wan L J. Surface mechanism of catalytic electrodes in lithium-oxygen batteries: How nanostructures mediate the interfacial reactions[J]. J. Am. Chem. Soc., 2020, 142(37): 16007-16015.
doi: 10.1021/jacs.0c07167 URL |
[40] |
Zhou Y, Yin K, Gu Q F, Tao L, Li Y J, Tan H, Zhou J H, Zhang W S, Li H B, Guo S J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(51): 26592-26598.
doi: 10.1002/anie.202114067 pmid: 34719865 |
[41] |
Yao W T, Yuan Y F, Tan G Q, Liu C, Cheng M, Yurkiv V, Bi X X, Long F, Friedrich C R, Mashayek F, Amine K, Lu J, Shahbazian-Yassar R. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts[J]. J. Am. Chem. Soc., 2019, 141(32): 12832-12838.
doi: 10.1021/jacs.9b05992 URL |
[42] |
Sun Z H, Cao X C, Tian M, Zeng K, Jiang Y X, Rummeli M H, Strasser P, Yang R Z. Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(22): 2100110.
doi: 10.1002/aenm.v11.22 URL |
[43] |
Zhou Y, Gu Q F, Li Y J, Tao L, Tan H, Yin K, Zhou J H, Guo S J. Cesium lead bromide perovskite-based lithium-oxygen batteries[J]. Nano Lett., 2021, 21(11): 4861-4867.
doi: 10.1021/acs.nanolett.1c01631 URL |
[44] |
Sadighi Z, Liu J P, Zhao L, Ciucci F, Kim J K. Metallic MoS2 nanosheets: Multifunctional electrocatalyst for the ORR, OER and Li-O2 batteries[J]. Nanoscale, 2018, 10(47): 22549-22559.
doi: 10.1039/c8nr07106c pmid: 30480696 |
[45] |
He B, Li G Y, Li J J, Wang J, Tong H, Fan Y Q, Wang W L, Sun S H, Dang F. MoSe2@CNT core-shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(18): 2003263.
doi: 10.1002/aenm.v11.18 URL |
[46] |
Zhang G L, Li G Y, Wang J, Tong H, Wang J C, Du Y, Sun S H, Dang F. 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries[J]. Adv. Energy Mater., 2022, 12(21): 2103910.
doi: 10.1002/aenm.v12.21 URL |
[47] |
Li G Y, Li N, Peng S T, He B, Wang J, Du Y, Zhang W B, Han K, Dang F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries[J]. Adv. Energy Mater., 2021, 11(1): 2002721.
doi: 10.1002/aenm.v11.1 URL |
[48] |
Wang P, Zhao D Y, Hui X B, Qian Z, Zhang P, Ren Y Y, Lin Y, Zhang Z W, Yin L W. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries[J]. Adv. Energy Mater., 2021, 11(32): 2003069.
doi: 10.1002/aenm.v11.32 URL |
[49] |
Wang P, Ren Y Y, Wang R T, Zhang P, Ding M J, Li C X, Zhao D Y, Qian Z, Zhang Z W, Zhang L Y, Yin L W. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries[J]. Nat. Commun., 2020, 11(1): 1576.
doi: 10.1038/s41467-020-15416-4 pmid: 32221290 |
[50] |
Geng J R, Ni Y X, Zhu Z, Wu Q, Gao S N, Hua W B, Indris S, Chen J, Li F J. Reversible metal and ligand redox chemistry in two-dimensional iron-organic framework for sustainable lithium-ion batteries[J]. J. Am. Chem. Soc., 2023, 145(3): 1564-1571.
doi: 10.1021/jacs.2c08273 pmid: 36635874 |
[51] |
Xiao L, Yi J Y, Kou Z K, Li E W, Deng B H, Wang J, Liu J P. Combinational design of electronic structure and nanoarray architecture achieves a low-overpotential oxygen electrode for aprotic lithium-oxygen batteries[J]. Small Methods, 2020, 4(3): 1900619.
doi: 10.1002/smtd.v4.3 URL |
[52] |
Kondori A, Jiang Z, Esmaeilirad M, Saray M T, Kakekhani A, Kucuk K, Delgado P N M, Maghsoudipour S, Hayes J, Johnson C S, Segre C U, Shahbazian-Yassar R, Rappe A M, Asadi M. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life[J]. Adv. Mater., 2020, 32(50): 2004028.
doi: 10.1002/adma.v32.50 URL |
[53] |
Lee G H, Sung M C, Kim Y S, Ju B, Kim D W. Organogermanium nanowire cathodes for efficient lithium-oxygen batteries[J]. ACS Nano, 2020, 14(11): 15894-15903.
doi: 10.1021/acsnano.0c07262 URL |
[54] |
Zhu Z, Shi X M, Fan G L, Li F J, Chen J. Photo-energy conversion and storage in an aprotic Li-O2 battery[J]. Angew. Chem. Int. Ed., 2019, 58(52): 19021-19026.
doi: 10.1002/anie.v58.52 URL |
[55] |
Zhu D D, Zhao Q C, Fan G L, Zhao S, Wang L B, Li F J, Chen J. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12460-12464.
doi: 10.1002/anie.201905954 pmid: 31273902 |
[56] |
Du D F, Zhao S, Zhu Z, Li F J, Chen J. Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery[J]. Angew. Chem. Int. Ed., 2020, 59(41): 18140-18144.
doi: 10.1002/anie.v59.41 URL |
[57] |
Lv Q L, Zhu Z, Zhao S, Wang L B, Zhao Q, Li F J, Archer L A, Chen J. Semiconducting metal-organic polymer nanosheets for a photoinvolved Li-O2 battery under visible light[J]. J. Am. Chem. Soc., 2021, 143(4): 1941-1947.
doi: 10.1021/jacs.0c11400 URL |
[58] |
Zhu Z, Ni Y X, Lv Q L, Geng J R, Xiea W, Li F J, Chen J. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride[J]. PNAS, 2021, 118(17): e2024619118.
doi: 10.1073/pnas.2024619118 URL |
[59] | Zhu Z, Lv Q L, Ni Y X, Gao S N, Geng J R, Liang J, Li F J. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium-oxygen battery[J]. Angew. Chem. Int. Ed., 2022, 61(12): e202116699. |
[60] |
Du D F, Zhu Z, Chan K Y, Li F J, Chen J. Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries[J]. Chem. Soc. Rev., 2022, 51(6): 1846-1860.
doi: 10.1039/D1CS00877C URL |
[61] | Zhu Z, Shi X M, Zhu D D, Wang L B, Lei K X, Li F J. A hybrid Na//K+-containing electrolyte//O2 battery with high rechargeability and cycle stability[J]. Research, 2019, 2019: 6180615. |
[62] |
Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6): 3205-3211.
doi: 10.1002/anie.v60.6 URL |
[63] | Zhou X Z, Zhang Q, Zhu Z, Cai Y C, Li H X, Li F J. Anion reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries[J]. Angew. Chem. Int. Ed., 2022, 61(30): e202205045. |
[64] |
Cao W Z, Li Q, Yu X Q, Li H. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78.
doi: 10.1016/j.esci.2022.02.002 URL |
[1] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[2] | 冷文华, 朱红乔. 结合(光)电化学方法研究光催化降解污染物反应[J]. 电化学(中英文), 2013, 19(5): 437-443. |
[3] | 胡林, 李征, 曾照强, . 高倍率性能正极材料LiFe_(0.9)Mg_(0.1)PO_4的结构[J]. 电化学(中英文), 2009, 15(3): 250-254. |
[4] | 孙世刚. 原子和分子水平层次的表面电化学与电催化研究[J]. 电化学(中英文), 1998, 4(1): 88-93. |
[5] | 孙世刚,陈小瑜,卢国强,林文锋,李南海,陈声培,戴鸿平,穆纪千. 电化学现场时间分辩FTIR反射光谱和程序电位阶跃暂态响应信号同步检测系统[J]. 电化学(中英文), 1995, 1(4): 387-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||