电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104431. doi: 10.13208/j.electrochem.210443
所属专题: “电子电镀和腐蚀”专题文章
魏丽君1, 周紫晗1, 吴蕴雯1,*(), 李明1, 王溯2
收稿日期:
2021-07-14
修回日期:
2022-05-05
出版日期:
2022-06-28
发布日期:
2022-05-07
通讯作者:
吴蕴雯
E-mail:tlwuyunwen@sjtu.edu.cn
基金资助:
Li-Jun Wei1, Zi-Han Zhou1, Yun-Wen Wu1,*(), Ming Li1, Su Wang2
Received:
2021-07-14
Revised:
2022-05-05
Published:
2022-06-28
Online:
2022-05-07
Contact:
Yun-Wen Wu
E-mail:tlwuyunwen@sjtu.edu.cn
摘要:
芯片中的钴互连作为铜互连之后的下一代互连技术受到了业界的极大关注,且已经引入集成电路7 nm以下的制程。钴互连主要采用湿法的电化学沉积技术,但由于保密原因和研究条件的限制,其研究报道不多。本文基于现有专利、文献报道较系统地介绍了钴互连技术的优势及发展现状,并从溶液化学和电化学角度综述了钴互连电镀基本工艺、基础镀液组成与添加剂、超填充电镀机理,以及镀层退火控制与杂质影响等的研究现状,并对钴互连技术下一步研究进行了展望。
魏丽君, 周紫晗, 吴蕴雯, 李明, 王溯. 芯片钴互连及其超填充电镀技术的研究进展[J]. 电化学(中英文), 2022, 28(6): 2104431.
Li-Jun Wei, Zi-Han Zhou, Yun-Wen Wu, Ming Li, Su Wang. Research Progresses of Cobalt Interconnect and Superfilling by Electroplating in Chips[J]. Journal of Electrochemistry, 2022, 28(6): 2104431.
表1
Intel 10+工艺的后端14层金属堆叠情况(加沟道接触部分)[15,16]
Layer | Pitch (nm) | Scaling | Material |
---|---|---|---|
TM1 | 11000 | 0.78x | Cu |
TM0 | 1080 | 1.0 | Cu |
M11 | 160 | 0.63 | Cu |
M10 | 160 | 0.63 | Cu |
M9 | 160 | 0.63 | Cu |
M8 | 112 | 0.70 | Cu |
M7 | 112 | 0.70 | Cu |
M6 | 84 | 0.53 | Cu |
M5 | 52 | 0.51 | Cu |
M4 | 44 | 0.55 | Cu |
M3 | 44 | 0.79 | Cu |
M2 | 44 | 0.85 | Cu |
M1 | 36 | 0.51 | Co |
M0 | 40 | 0.71 | Co |
TCN | 54 | 0.77 | Co |
表3
钴的超填充机理比较
Superfilling mechanism | Feature | Conditions |
---|---|---|
S-shaped negative differential resistance model | Rely on the concentration gradient of additive derivatives served as inhibitors to realize superfilling | The additive used in the electrolyte can form complex with cobalt ions |
Differential current efficiency fill mechanism | Rely on the concentration gradient of H+/pH to realize superfilling | Exist in all kinds of electrolyte no matter what the additive is |
Hydrogen reduction-induced deactivation model | Rely on the inhibitors deactivated at the bottom of the feature | The additive used in the electrolyte is deactivated by other factors |
[1] | Bourzac K. Cobalt could untangle chips’ wiring problems chipmakers are replacing some copper connections[J]. IEEE Spectr., 2018, 55(2): 12-13. |
[2] | Andricacos P C. Copper on-chip interconnections: A break-through in electrodeposition to make better chips[J]. Electrochem. Soc. Interface, 1999, 8(1): 32-37. |
[3] |
Steinhögl W, Schindler G, Steinlesberger G, Engelhardt M. Size-dependent resistivity of metallic wires in the mesoscopic range[J]. Phys. Rev. B, 2002, 66(7): 075414.
doi: 10.1103/PhysRevB.66.075414 URL |
[4] | Cheng Y L, Lee C Y, Huang Y L. Noble and precious metals-Properties, nanoscale effects and applications[M]. London: IntechOpen, 2018. |
[5] | Tigelaar H. How transistor area shrank by 1 million fold[M]. 1st ed.ed. Cham: Springer, 2020. |
[6] |
Gall D. Electron mean free path in elemental metals[J]. J. Appl. Phys., 2016, 119(8): 085101.
doi: 10.1063/1.4942216 URL |
[7] |
Durkan C, Welland M E. Size effects in the electrical resistivity of polycrystalline nanowires[J]. Phys. Rev. B, 2000, 61(20): 14215-14218.
doi: 10.1103/PhysRevB.61.14215 URL |
[8] | Akolkar R. Encyclopedia of interfacial chemistry 1st ed.ed.[M]. Amsterdam: Elsevier, 2018. |
[9] |
He M, Zhang X, Nogami T, Lin X, Kelly J, Kim H, Spooner T, Edelstein D, Zhao L. Mechanism of Co liner as enhancement layer for Cu interconnect gap-fill[J]. J. Electrochem. Soc., 2013, 160(12): D3040-D3044.
doi: 10.1149/2.009312jes URL |
[10] | Bekiaris N, Wu Z Y, Ren H, Naik M., Park J H, Lee M, Ha T H, Hou W T, Bakke J R, Gage M., Wang Y, Tang J S. Cobalt fill for advanced interconnects:2017 IEEE International Interconnect Technology Conference (IITC), Hsinchu, May 16-18, 2017[C]. Piscataway: IEEE, 2017. |
[11] | Huang I. “Apple, Huawei Use TSMC, But Their 7nm SoCs Are Different”[EB/OL]. 2020. https://www.eetimes.com/apple-huawei-use-tsmc-but-their-7nm-socs-are-differet/# |
[12] | Xu Y, Ma F Y, Lei Y, Daito K, Banthia V, Wu K, Wang J Y, Chang M. Selectively deposition of corrosion-free cobalt contacts: US, WO2018094329A1[P/OL]. 2017-11-20 [2018-05-24]. |
[13] | Van der Veen M H, Vandersmissen K, Dictus D, Demuynck S, Liu R, Bin X, Nalla P, Lesniewska A, Hall L, Croes K, Zhao L, Bömmels J, Kolics A, Tökei Z. Cobalt bottom-up contact and via prefill enabling advanced logic and DRAM technologies:2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), Grenoble, May 18-21, 2015[C]. Piscataway: IEEE, 2015. |
[14] | Griggio F, Palmer J, Pan F, Toledo N, Schmitz A, Tsameret I, Kasim R, Leatherman G, Hicks J, Madhavan A, Shin J, Steigerwald J, Yeoh A, Auth C. Reliability of dual-damascene local interconnects featuring cobalt on 10 nm logic technology: 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, March 11-15, 2018[C]. Piscataway: IEEE, 2018. |
[15] | Auth C, Aliyarukunju A, Asoro M, Bergstrom D, Bhagwat V, Birdsall J, Bisnik N, Buehler M, Chikarmane V, Ding G, Fu Q, Gomez H, Han W, Hanken D, Haran M, Hattendorf M., Heussner R, Hiramatsu H, Ho B, Jaloviar S, Jin I, Joshi S, Kirby S, Kosaraju S, Kothari H, Leatherman G, Lee K, Leib J, Madhavan A, Marla K, Meyer H, Mule, T, Parker C, Parthasarathy S, Pelto C, Pipes L, Post I, Prince M, Rahman A, Rajamani S, Saha A, Santos J D, Sharma M, Sharma V, Shin J, Sinha P, Smith P, Sprinkle M, Amour A S, Staus C, Suri R, Towner D, Tripathi A, Tura A, Ward C, Yeoh A. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects: 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, Dec 2-6, 2017[C]. Piscataway: IEEE, 2017. |
[16] | Grover R, Acosta T, Andyke C, Armagan E, Auth C, Chugh S, Downes K, Hattendorf M, Jack N, Joshi S, Kasim R, Leatherman G, Lee S, Lin C, Madhavan A, Mao H, Lowrie A, Martin G, McPherson, Nayak P, Neale A, Nminibapiel, Orr B, Palmer J, Pelto C, Poon S. S, Post I, Pramanik, Rahman A, Ramey S, Seifert N, Sethi, Schmitz, Wu H., Yeoh A. A Reliability Overview of Intel’s 10+ Logic Technology: 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, April 28-May 30, 2020[C]. Piscataway: IEEE, 2020. |
[17] | Pedreira O V, Croes K, Lešniewska A, Wu C, van der Veen M H, de Messemaeker J, Vandersmissen K, Jourdan N, Wen L G, Adelmann C, Briggs B, Gonzalez V V, Bömmels J, Tökei Z. Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects:2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, April 2-6, 2017[C]. Piscataway: IEEE, 2017. |
[18] | Pedreira O V, Croes K, Zahedmanesh H, Vandersmissen K, van der Veen M H, Gonzalez V V, Dictus D, Zhao L, Kolies A, Tökei Z. Electromigration and Thermal Storage Study of Barrierless Co Vias:2018 IEEE International Interconnect Technology Conference (IITC), Santa Clara, June 4-7, 2018[C]. Piscataway: IEEE, 2018. |
[19] | Koike J, Haneda M, Iijima J, Wada M.. Cu Alloy Metallization for Self-Forming Barrier Process:2006 International Interconnect Technology Conference, Burlingame, June 5-7, 2006[C]. Piscataway: IEEE, 2006. |
[20] | Jezewski C J, Clarke J S, Indukuri T K, Gstrein F, Zierath D J. Cobalt based interconnects and methods of fabrication thereof: US, US9514983B2[P]. 2012-12-28 [2016-12-06]. |
[21] | Scotten J. IEDM 2018 Imec on Interconnect Metals Beyond Copper[EB/OL]. (2018-12-28) https://semiwiki.com/semiconductor-services/ic-knowledge/7923-iedm-2018-imec-on-interconnect-metals-beyond-copper/ |
[22] | Ackermann S, Si K, Bolton O, Bewick N, Adolf J, Wu J. An acidic aqueous composition for electrolytically depositing a copper deposit: Germany, EP3470552A1[P/OL]. 2017-10-13 [2019-04-17]. |
[23] |
Rigsby M A, Spurlin T A, Reid J D. The multi-functional role of boric acid in cobalt electrodeposition and superfill[J]. J. Electrochem. Soc., 2020, 167(11): 112507.
doi: 10.1149/1945-7111/aba640 URL |
[24] |
Applegarth L M S G A, Pye C C, Cox J S. Tremaine P R. Raman spectroscopic and ab initio investigation of aqueous boric acid, borate, and polyborate speciation from 25 to 80 oC[J]. Ind. Eng. Chem. Res., 2017, 56(47): 13983-13996.
doi: 10.1021/acs.iecr.7b03316 URL |
[25] |
Graff A, Barrez E, Baranek P, Bachet M, Bénézeth P. Complexation of nickel ions by boric acid or (poly)borates[J]. J. Solut. Chem., 2017, 46(1): 25-43.
doi: 10.1007/s10953-016-0555-x URL |
[26] |
Zech N, Landolt D. The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes[J]. Electrochim. Acta, 2000, 45(21): 3461-3471.
doi: 10.1016/S0013-4686(00)00415-1 URL |
[27] |
Demetriou A, Pashalidis I. Adsorption of boron on iron-oxide in aqueous solutions[J]. Desalin. Water Treat., 2012, 37(1-3): 315-320.
doi: 10.1080/19443994.2012.661288 URL |
[28] | Kienle M P, Mayer D, Arnold M, Fluegel A, Emnet C. Composition for cobalt plating comprising additive for void-free submicron feature filling: USA, 20190226107A1[P]. |
[29] | Commander J, Whitten K, Paneccasio V JR, Sun S P, Yakobson E, Han J W. Cobalt filling of interconnects: US, WO2019009989A1[P/OL]. 2018-06-14 [2019-01-10]. |
[30] |
Pan B S, Zhang Q X, Liu Z J, Yang Y. Influence of butynediol and tetrabutylammonium bromide on the morphology and structure of electrodeposited cobalt in the presence of saccharin[J]. Mater. Chem. Phys., 2019, 228: 37-44.
doi: 10.1016/j.matchemphys.2019.02.038 URL |
[31] |
Kiruba M, Jeyabharathi C. Discerning the oscillatory electrochemical response during electrodeposition of cobalt in the presence of but-2-yne-1,4-diol[J]. J. Solid State Electrochem., 2020, 24(11-12): 2997-3002.
doi: 10.1007/s10008-020-04735-7 URL |
[32] |
Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.
doi: 10.1149/2.1111613jes URL |
[33] |
Rigsby M A, Brogan L J, Doubina N V, Liu Y H, Opocensky E C, Spurlin T A, Zhou J, Reid J D. The critical role of pH gradient formation in driving superconformal cobalt deposition[J]. J. Electrochem. Soc., 2018, 166(1): D3167-D3174.
doi: 10.1149/2.0211901jes URL |
[34] |
Rigsby M A, Brogan L J, Doubina N V, Liu Y H, Opocensky E C, Spurlin T A, Zhou J, Reid J D. Superconformal cobalt fill through the use of sacrificial oxidants[J]. ECS Transactions, 2017, 80(10): 767-776.
doi: 10.1149/08010.0767ecst URL |
[35] |
Jeffrey M I, Choo W L, Breuer P L. The effect of additives and impurities on the cobalt electrowinning process[J]. Miner. Eng., 2000, 13(12): 1231-1241.
doi: 10.1016/S0892-6875(00)00107-2 URL |
[36] |
Wu J, Wafula F, Branagan S, Suzuki H, van Eisden J. Mechanism of cobalt bottom-up filling for advanced node interconnect metallization[J]. J. Electrochem. Soc., 2018, 166(1): D3136-D3141.
doi: 10.1149/2.0161901jes URL |
[37] |
Kang J, Sung M, Byun J, Kwon O J, Kim J J. Proton sensitive additive for cobalt electrodeposition[J]. J. Electrochem. Soc., 2020, 167(12): 122510.
doi: 10.1149/1945-7111/abb284 URL |
[38] |
Kang J, Sung M, Byun J, Kwon O J, Kim J J. Superconformal cobalt electrodeposition with a hydrogen evolution reaction suppressing additive[J]. J. Electrochem. Soc., 2020, 167(16): 162514.
doi: 10.1149/1945-7111/abd3b9 URL |
[39] | American Institute of Mining, Metallurgical Engineers. Mining and metallurgy[M]. New York: The Institute, 1925. 159. |
[40] |
Edalati K, Hashiguchi Y, Iwaoka H, Matsunaga H, Valiev R Z, Horita Z. Long-time stability of metals after severe plastic deformation: Softening and hardening by self-annealing versus thermal stability[J]. Mater. Sci. Eng. A, 2018, 729: 340-348.
doi: 10.1016/j.msea.2018.05.079 URL |
[41] |
Doubina N V, Spurlin T A, Opocensky E C, Reid J D. The effect of thermal annealing on cobalt film properties and grain structure[J]. MRS Adv., 2020, 5(37-38): 1919-1927.
doi: 10.1557/adv.2020.257 URL |
[42] |
Dille J, Charlier J, Winand R. Effects of heat treatments on the ductility of cobalt electrodeposits[J]. J. Mater. Sci., 1998, 33(11): 2771-2779.
doi: 10.1023/A:1017569316182 URL |
[43] | Kamineni V, Kelly J, Adusumilli P, van der Straten O, Pranatharthiharan B. Devices and methods of cobalt fill metallization: USA, 10128151B2[P]. |
[44] |
Hu Y, Deb S, Li D, Huang Q. Effects of organic additives on the impurity and grain structure of electrodeposited cobalt[J]. Electrochim. Acta, 2021, 368: 137594.
doi: 10.1016/j.electacta.2020.137594 URL |
[45] |
Pradhan N, Singh P, Tripathy B C, Das S C. Electrowinning of cobalt from acidic sulphate solutions-effect of chloride ion[J]. Miner. Eng., 2001, 14(7): 775-783.
doi: 10.1016/S0892-6875(01)00072-3 URL |
[1] | 翟悦晖, 彭逸霄, 洪延, 陈苑明, 周国云, 何为, 王朋举, 陈先明, 王翀. 铜互连电镀中有机添加剂的合成与分析[J]. 电化学(中英文), 2023, 29(8): 2208111-. |
[2] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[3] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[4] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[5] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[6] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[7] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
[8] | 黄葵, 黄容姣, 刘素琴, 何震. 电子功能外延薄膜的电沉积[J]. 电化学(中英文), 2022, 28(7): 2213006-. |
[9] | 沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002-. |
[10] | 倪修任, 张雅婷, 王翀, 洪延, 陈苑明, 苏元章, 何为, 陈先明, 黄本霞, 续振林, 李毅峰, 李能彬, 杜永杰. 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学(中英文), 2022, 28(7): 2213008-. |
[11] | 秦凯旋, 常鹏飞, 黄钰林, 李明, 杭弢. 钴互连化学机械抛光浆料中的界面腐蚀行为研究[J]. 电化学(中英文), 2022, 28(6): 2104471-. |
[12] | 马晓川, 李亚强, 杨培霞, 张锦秋, 安茂忠. 孔雀石绿对金属钴超填充和成核过程的影响[J]. 电化学(中英文), 2022, 28(6): 2104521-. |
[13] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[14] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[15] | 王昊, 曹晓舟, 薛向欣. 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2022, 28(4): 2103071-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||