电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104471. doi: 10.13208/j.electrochem.210447
所属专题: “电子电镀和腐蚀”专题文章
收稿日期:
2021-11-05
修回日期:
2021-12-14
出版日期:
2022-06-28
发布日期:
2022-03-04
通讯作者:
杭弢
E-mail:hangtao@sjtu.edu.cn
基金资助:
Kai-Xuan Qin, Peng-Fei Chang, Yu-Lin Huang, Ming Li, Tao Hang*()
Received:
2021-11-05
Revised:
2021-12-14
Published:
2022-06-28
Online:
2022-03-04
Contact:
Tao Hang
E-mail:hangtao@sjtu.edu.cn
摘要:
芯片互连层进行化学机械抛光(CMP)时,抛光液对互连金属的腐蚀问题是影响抛光后表面质量的重要因素。本文在含有氧化剂过硫酸钾(KPS)、 络合剂甘氨酸(Gly)和缓蚀剂苯骈三氮唑(BTA)的抛光液体系中,对互连金属钴的界面腐蚀行为进行了研究。结果显示, 强氧化剂KPS在互连层抛光液中并不能使钴表面形成稳定钝化,需要进一步引入BTA以抑制过度腐蚀。静态腐蚀实验和扫描电子显微镜观察显示, BTA能有效地降低钴在抛光液中的腐蚀,提高表面质量,电化学测试计算出其缓蚀效率最高可达99.02%。电化学阻抗谱和X射线光电子能谱揭示了腐蚀过程机理: Gly的加入可以溶解钴表面的二价及三价氧化物,破坏KPS形成的钝化层,BTA的引入会大幅增加电化学腐蚀过程的电荷转移电阻,从而抑制抛光液对钴的腐蚀。
秦凯旋, 常鹏飞, 黄钰林, 李明, 杭弢. 钴互连化学机械抛光浆料中的界面腐蚀行为研究[J]. 电化学(中英文), 2022, 28(6): 2104471.
Kai-Xuan Qin, Peng-Fei Chang, Yu-Lin Huang, Ming Li, Tao Hang. An Investigation on the Interface Corrosion Behaviors of Cobalt Interconnects in Chemical Mechanical Polishing Slurry[J]. Journal of Electrochemistry, 2022, 28(6): 2104471.
表1
钴在不同溶液中动电位极化参数
Composition | Ecorr/V | icorr/(μA·cm-2) | η/% |
---|---|---|---|
0.25wt% KPS | 0.105 | 393.46 | - |
0.25wt% KPS + 0.1 mol·L-1 Gly | -0.438 | 398.84 | - |
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.1wt%BTA | -0.362 | 67.41 | 83.10 |
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.2wt% BTA | -0.346 | 24.34 | 93.90 |
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.3wt% BTA | -0.335 | 11.76 | 97.05 |
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.4wt% BTA | -0.321 | 3.89 | 99.02 |
表3
钴在不同溶液中等效电路模型拟合参数
Composition | Rsol (Ω·cm2) | Rct (Ω·cm2) | CPE | |
---|---|---|---|---|
CPE-T (μF·cm-2) | CPE-P | |||
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.1wt% BTA | 123.8 | 862.1 | 41.1 | 0.74 |
0.25wt% KPS + 0.2 mol·L-1 Gly + 0.2wt% BTA | 112.9 | 1998 | 32.5 | 0.79 |
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.3wt% BTA | 90.77 | 6434 | 12.87 | 0.85 |
0.25wt% KPS + 0.1 mol·L-1 Gly + 0.4wt% BTA | 81.15 | 15354 | 14.91 | 0.81 |
[1] |
Davis J A, Venkatesan R, Kaloyeros A, Beylansky M, Souri S J, Banerjee K, Saraswat K C, Rahman A, Reif R, Meindl J D. Interconnect limits on gigascale integration (GSI) in the 21st century[J]. Proc. IEEE, 2001, 89(3): 305-324.
doi: 10.1109/5.915376 URL |
[2] | Mont F W, Zhang X Y, Wang W, Kelly J J, Standaert T E, Quon R, Ryan E T. Cobalt interconnect on same copper barrier process integration at the 7nm node[C]// Mont F W, 2017 IEEE International Interconnect Technology Conference (IITC), USA: IEEE, 2017. |
[3] |
Wu J, Wafula F, Branagan S, Suzuki H, van Eisden J. Mechanism of cobalt bottom-up filling for advanced node interconnect metallization[J]. J. Electrochem. Soc., 2018, 166(1): D3136-D3141.
doi: 10.1149/2.0161901jes URL |
[4] | Wafula F, Wu J, Branagan S, Suzuki H, Gracias A, van Eisden J. Electrolytic cobalt fill of sub-5 nm node interconnect features[C]// Wafula F, 2018 IEEE International Interconnect Technology Conference (IITC), USA: IEEE, 2018. |
[5] | Bekiaris N, Wu Z Y, Ren H, Naik M, Park J H, Lee M, Ha T H, Hou W T, Bakke J R, Gage M. Cobalt fill for advanced interconnects[C]// Bekiaris N, 2017 IEEE International Interconnect Technology Conference (IITC), USA: IEEE, 2017. |
[6] | Kamineni V, Raymond M, Siddiqui S, Mont F, Tsai S, Niu C, Labonte A, Labelle C, Fan S, Peethala B, Adusumilli P, Patlolla R, Priyadarshini D, Mignot Y, Carr A, Pancharatnam S, Shearer J, Surisetty C, Arnold J, Canaperi D, Haran B, Jagannathan H. Tungsten and cobalt metallization: A material study for MOL local interconnects[C]// Kamineni V, 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), USA: IEEE, 2016. |
[7] | Mehrotra V, Sam S L, Boning D, Chandrakasan A, Vallishayee R, Nassif S. A methodology for modeling the effects of systematic within-die interconnect and device variation on circuit performance[C]// Mehrotra V, Proceedings of the 37th Annual Design Automation Conference, USA: Assoc computing machiner, 2000. |
[8] | He L, Kahng A B, Tam K H, Xiong J J. Design of integrated-circuit interconnects with accurate modeling of chemical-mechanical planarization[C]// He L, Design and Process Integration for Microelectronic Manufacturing III, USA: Spin-int soc optical engineering, 2005. |
[9] |
Zantye P B, Kumar A, Sikder A K. Chemical mechanical planarization for microelectronics applications[J]. Mater. Sci. Eng. R-Rep., 2004, 45(3-6): 89-220.
doi: 10.1016/j.mser.2004.06.002 URL |
[10] |
Singh R K, Bajaj R. Advances in chemical-mechanical planarization[J]. MRS Bull., 2002, 27(10): 743-751.
doi: 10.1557/mrs2002.244 URL |
[11] |
Xiao Y, Ma Z, Prawoto C, Zhou C, Chan M. Ultralow-dielectric with structured pores for interconnect delay reduction[J]. IEEE Trans. Electron Devices, 2020, 67(5): 2071-2075.
doi: 10.1109/TED.2020.2983230 URL |
[12] |
Popuri R, Sagi K V, Alety S R, Peethala B C, Amanapu H, Patlolla R, Babu S V. Citric acid as a complexing agent in chemical mechanical polishing slurries for cobalt films for interconnect applications[J]. ECS J. Solid State Sci. Technol., 2017, 6(9): P594-P602.
doi: 10.1149/2.0111709jss URL |
[13] |
Tian Q Y, Wang S L, Xiao Y, Wang C W, Wang Q W, Liu F X, Zhang J, Wang R. Effect of amine based chelating agent and H2O2 on cobalt contact chemical mechanical polishing[J]. ECS J. Solid State Sci. Technol., 2018, 7(8): P416-P422.
doi: 10.1149/2.0271808jss URL |
[14] | Xu A X, Liu W L, Zhao G Y, Feng D H, Wang W L, Song Z T. Investigation of effect of L-aspartic acid and H2O2 for cobalt chemical mechanical polishing[J]. ECS J. Solid State Sci. Technol., 2020, 9(4): 044007. |
[15] |
Kanki T, Kimura T, Nakamura T. Chemical and mechanical properties of Cu surface reaction layers in Cu-CMP to improve planarization[J]. ECS J. Solid State Sci. Technol., 2013, 2(9): P375-P379.
doi: 10.1149/2.023309jss URL |
[16] |
Zhang L F, Wang T Q, Lu X C. Potassium persulfate as an oxidizer in chemical mechanical polishing slurries relevant for copper interconnects with cobalt barrier layers[J]. J. Mater. Sci., 2020, 55(21): 8992-9002.
doi: 10.1007/s10853-020-04579-6 URL |
[17] |
Lee D, Lee H, Jeong H. Slurry components in metal chemical mechanical planarization (CMP) Process: Review[J]. Int. J. Precis. Eng. Manuf., 2016, 17(12): 1751-1762.
doi: 10.1007/s12541-016-0201-y URL |
[18] |
Seo J. A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical planarization[J]. J. Mater. Res., 2021, 36(1): 235-257.
doi: 10.1557/s43578-020-00060-x URL |
[19] |
Jiang L, He Y Y, Li Y, Li Y Z, Luo J B. Synergetic effect of H2O2 and glycine on cobalt CMP in weakly alkaline slurry[J]. Microelectron. Eng., 2014, 122: 82-86.
doi: 10.1016/j.mee.2014.02.002 URL |
[20] |
Lu H S, Zeng X, Wang J X, Chen F, Qu X P. The effect of glycine and benzotriazole on corrosion and polishing properties of cobalt in acid slurry[J]. J. Electrochem. Soc., 2012, 159(9): C383-C387.
doi: 10.1149/2.036209jes URL |
[21] |
Hu L J, Pan G F, Li C, Zhang X B, Liu J, He P, Wang C W. Potassium tartrate as a complexing agent for chemical mechanical polishing of Cu/Co/TaN barrier liner stack in H2O2 based alkaline slurries[J]. Mater. Sci. Semicond. Process, 2020, 108: 104883.
doi: 10.1016/j.mssp.2019.104883 URL |
[22] |
Zhou J K, Wang J C, Niu X H, Zhang K, Wang Z, Cui Y Q, Wang R. Chemical interactions and mechanisms of different pH regulators on copper and cobalt removal rate of copper film CMP for GLSI[J]. ECS J. Solid State Sci. Technol., 2019, 8(2): P99-P105.
doi: 10.1149/2.0101902jss URL |
[23] |
Chivot J, Mendoza L, Mansour C, Pauporté T, Cassir M. New insight in the behaviour of Co-H2O system at 25-150 oC, based on revised pourbaix diagrams[J]. Corrosion Sci., 2008, 50(1): 62-69.
doi: 10.1016/j.corsci.2007.07.002 URL |
[24] |
Ismail K M, Badawy W A. Electrochemical and XPS investigations of cobalt in KOH solutions[J]. J. Appl. Electrochem., 2000, 30(11): 1303-1311.
doi: 10.1023/A:1026560422090 URL |
[25] |
Yin D, Yang L, Niu X H, Ma Y Z, Liu M R, Sun X Q, Gao B H, Tan B M. Theoretical and electrochemical analysis on inhibition effect of benzotriazole and 1,2,4-triazole on cobalt surface[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2020, 591: 124516.
doi: 10.1016/j.colsurfa.2020.124516 URL |
[26] | Cao C N(曹楚南). Principles of electrochemical of corrosion[M]. Beijing: Chemical Industry Press(化学工业出版社), 2008: 202. |
[27] |
Ryu H Y, Lee C H, Hwang J K, Cho H W, Prasad N Y, Kim T G, Hamada S, Park J G. Characterization of different cobalt surfaces and interactions with benzotriazole for CMP application[J]. ECS J. Solid State Sci. Technol., 2020, 9(6): 064005.
doi: 10.1149/2162-8777/aba331 URL |
[28] |
Ye J H, Tang J J, Zhao Y J, Wu C D. Synthesis and catalytic properties of porous metal silica materials templated and functionalized by extended coordination cages[J]. Inorg. Chem., 2020, 59(1): 767-776.
doi: 10.1021/acs.inorgchem.9b03039 URL |
[29] |
Zhang W M, Yao X Y, Zhou S N, Li X W, Li L, Yu Z, Gu L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst[J]. Small, 2018, 14(24): 1800423.
doi: 10.1002/smll.201800423 URL |
[30] |
Wu S M, Li X L, Xu Y, Wu J B, Wang Z P, Han Y D, Zhang X. Hierarchical spinel NixCo1-xFe2O4 microcubes derived from Fe-based MOF for high-sensitive acetone sensor[J]. Ceram. Int., 2018, 44(16): 19390-19396.
doi: 10.1016/j.ceramint.2018.07.170 URL |
[31] |
Du M, Song D, Huang A M, Chen R X, Jin D Q, Rui K, Zhang C, Zhu J X, Huang W. Stereoselectively assembled metal-organic framework (MOF) host for catalytic synthesis of carbon hybrids for alkaline-metal-ion batteries[J]. Angew. Chem. Int. Edit., 2019, 58(16): 5307-5311.
doi: 10.1002/anie.201900240 URL |
[32] |
Ismail K M, Badawy W A. Electrochemical and XPS investigations of cobalt in KOH solutions[J]. J. Appl. Electrochem., 2000, 30(11): 1303-1311.
doi: 10.1023/A:1026560422090 URL |
[1] | 沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002-. |
[2] | 杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501-. |
[3] | 张涛, 刘一蒲, 叶齐通, 范红金. 工业级碱性海水电解:近期进展和展望[J]. 电化学(中英文), 2022, 28(10): 2214006-. |
[4] | 况先银, 金少强, 曹艳辉, 张艳梅, 董士刚, 朱龙晖, 林理文, 林昌健. 铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究[J]. 电化学(中英文), 2021, 27(6): 624-636. |
[5] | 邹振文, 郑大江, 王子明, 宋光铃. 新型单丝电极交流探头在3.5wt.% NaCl中的电化学响应规律研究[J]. 电化学(中英文), 2020, 26(3): 317-327. |
[6] | 张 翅, 李成飞, 李高仁. 负载于刻蚀镍泡沫上钯纳米粒子作为乙醇氧化高性能电催化剂[J]. 电化学(中英文), 2019, 25(5): 571-578. |
[7] | 赫威,燕汝,王瑛琦,高翔,马厚义. 在冷轧钢板表面制备二乙烯三胺五甲叉膦酸-锌化学转化膜及其腐蚀防护性能的研究[J]. 电化学(中英文), 2018, 24(2): 111-121. |
[8] | H. A. Fetouh, B.A. Abd-El-Nabey, Y.M. Goher, M. S. Karam. 银纳米颗粒对铝金属在酸性介质中的耐蚀性能研究[J]. 电化学(中英文), 2018, 24(1): 89-100. |
[9] | 陈晓航,陈寞静,闵宇霖,徐群杰. 水热法制备铝合金超疏水表面及电化学性能研究[J]. 电化学(中英文), 2018, 24(1): 28-35. |
[10] | 徐天宇,王世颖,王文昌,陈智栋. 镍离子对中磷镍基体氯化胆碱无氰浸金表面的改善[J]. 电化学(中英文), 2018, 24(1): 36-39. |
[11] | 王静静,董士刚*,张小娟,吕虹玮,伍运昌,杜荣归,林昌健*. pH/Cl-复合探针技术对钢筋混凝土电化学除氯的原位检测[J]. 电化学(中英文), 2014, 20(2): 95-100. |
[12] | 叶陈清,胡融刚,侯瑞青,王小平,杜荣归,林昌健*. 敏化处理304不锈钢局部腐蚀行为的扫描微电极法研究[J]. 电化学(中英文), 2013, 19(6): 507-511. |
[13] | 曹发和, 夏妍, 刘文娟, 常林荣, 张鉴清. SECM基本原理及其在金属腐蚀中的应用[J]. 电化学(中英文), 2013, 19(5): 393-401. |
[14] | 李凌杰, 贺毓玲, 雷惊雷, 张胜涛. 椭圆偏振光谱技术的腐蚀研究应用[J]. 电化学(中英文), 2013, 19(5): 402-408. |
[15] | 孙海静, 刘莉, 李瑛. 深海静水压力环境下低合金高强度钢腐蚀行为研究[J]. 电化学(中英文), 2013, 19(5): 418-424. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||