[1] |
Goodenough J, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3):587-603.
doi: 10.1021/cm901452z
URL
|
[2] |
Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33):1-24.
|
[3] |
Dusastre V. Materials for sustainable energy: A Collection of peer-reviewed research and review articles from nature publishing group[M]. World Scientific, 2010.
|
[4] |
Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407:724-727.
doi: 10.1038/35037553
URL
|
[5] |
Niu J, Zhang Z, Aurbach D. Alloy anode materials for rechargeable Mg ion batteries[J]. Adv. Energy Mater., 2020, 10(23):1-33.
|
[6] |
Choi J, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4):1-16.
|
[7] |
Aurbach D, Gofer Y, Lu Z, Schechter A, Chusid O, Gizbar H, Cohen Y, Ashkenazi V, Moshkovich M, Turgeman R. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology[J]. J. Power Sources, 2001, 97-98:28-32.
doi: 10.1016/S0378-7753(01)00585-7
URL
|
[8] |
Attias R, Salama M, Hirsch B, Goffer Y, Aurbach D. Anode-electrolyte interfaces in secondary magnesium batteries[J]. Joule, 2019, 3(1):27-52.
doi: 10.1016/j.joule.2018.10.028
|
[9] |
Mohtadi R, Mizuno F. Magnesium batteries: Current state of the art, issues and future perspectives[J]. Beilstein J. Nanotechnol., 2014, 5(1):1291-1311.
doi: 10.3762/bjnano.5.143
URL
|
[10] |
Deivanayagam R, Ingram B, Shahbazian-Yassar R. Progress in development of electrolytes for magnesium batteries[J]. Energy Storage Mater., 2019, 21:136-153.
|
[11] |
Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S, Allred G D, Zajicek J, Kotani Y. Electrolyte roadblocks to a magnesium rechargeable battery[J]. Energy Environ. Sci., 2012, 5(3):5941-5950.
doi: 10.1039/c2ee03029b
URL
|
[12] |
Shi J, Zhang J, Guo J, Lu J. Interfaces in rechargeable magnesium batteries[J]. Nanoscale Horiz., 2020, 5(11):1467-1475.
doi: 10.1039/D0NH00379D
URL
|
[13] |
Li Y, Guan S, Huo H, Ma Y, Gao Y, Zuo P, Yin G. A review of magnesium aluminum chloride complex electrolytes for Mg batteries[J]. Adv. Funct. Mater., 2021, 31(24):1-22.
|
[14] |
Liu F, Wang T, Liu X, Fan L Z. Challenges and recent progress on key materials for rechargeable magnesium batteries[J]. Adv. Energy Mater., 2021, 11(2):1-28.
|
[15] |
Wang F F, Guo Y S, Yang J, Nuli Y, Hirano S I. A novel electrolyte system without a Grignard reagent for recharge-able magnesium batteries[J]. Chem. Commun., 2012, 48(87):10763-10765.
doi: 10.1039/c2cc35857c
URL
|
[16] |
Shuai H, Xu J, Huang K. Progress in retrospect of electrolytes for secondary magnesium batteries[J]. Coord. Chem. Rev., 2020, 422:213478.
doi: 10.1016/j.ccr.2020.213478
URL
|
[17] |
Zhao-Karger Z, Zhao X, Fuhr O, Fichtner M. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries[J]. RSC Adv., 2013, 3(37):16330-16335.
doi: 10.1039/c3ra43206h
URL
|
[18] |
Mao M, Gao T, Hou S, Wang C S. A critical review of cathodes for rechargeable Mg batteries[J]. Chem. Soc. Rev., 2018, 47(23):8804-8841.
doi: 10.1039/C8CS00319J
URL
|
[19] |
Tan S, Xiong F, Wang J, An Q, Mai L Q. Crystal regulation towards rechargeable magnesium battery cathode materials[J]. Mater. Horiz., 2020, 7(8):1971-1995.
doi: 10.1039/D0MH00315H
URL
|
[20] |
Kim H S, Arthur T S, Allred G D, Zajicek J, Newman J G, Rodnyansky A E, Oliver A G, Boggess W C, Muldoon J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode[J]. Nat. Commun., 2011, 2(1):1-6.
|
[21] |
Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23):11503-11618.
doi: 10.1021/cr500003w
URL
|
[22] |
Sun Y, Zou Q, Wang W, Lu Y C. Non-passivating anion adsorption enables reversible magnesium redox in simple non-nucleophilic electrolytes[J]. ACS Energy Lett., 2021, 6(10):3607-3613.
doi: 10.1021/acsenergylett.1c01780
URL
|
[23] |
Li X, Gao T, Han F, Ma Z, Fan X, Hou S, Eidson N, Li W, Wang C. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive[J]. Adv. Energy Mater., 2018, 8(7):1-6.
|
[24] |
Wu M, Bhargav A, Cui Y, Siegel A, Agarwal M, Ma Y, Fu Y. Highly reversible diphenyl trisulfide catholyte for rechargeable lithium batteries[J]. ACS Energy Lett., 2016, 1(6):1221-1226.
doi: 10.1021/acsenergylett.6b00533
URL
|
[25] |
Pipes R, Bhargav A, Manthiram A. Phenyl disulfide additive for solution-mediated carbon dioxide utilization in Li-CO2 batteries[J]. Adv. Energy Mater., 2019, 9(21):1-8.
|
[26] |
Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M. Progress in rechargeable magnesium battery technology[J]. Adv. Mater., 2007, 19(23):4260-4267.
doi: 10.1002/adma.200701495
URL
|
[27] |
Roux M V, Foces-Foces C, Notario R, Ribeiro da Silva M A, Ribeiro da Silva M, Santos A, Juaristi E. Experimental and computational thermochemical study of sulfur-containing Amino acids: L-Cysteine, L-Cystine, and L-Cysteine-derived radicals. S-S, S-H, and C-S bond dissociation enthalpies[J]. J. Phys. Chem. B, 2010, 114(32):10530-10540.
doi: 10.1021/jp1025637
URL
|
[28] |
Scheriber F. Structure and growth of self-assembling monolayers[J]. Prog. Surf. Sci., 2000, 65(5-8):151-257.
doi: 10.1016/S0079-6816(00)00024-1
URL
|
[29] |
Roberts J, Friend C. Spectroscopic identification of surface phenyl thiolate and benzyne on Mo(110)[J]. J. Chem. Phys., 1988, 88(11):7172-7180.
doi: 10.1063/1.454369
URL
|
[30] |
Lu J Y, Ke C Z, Gong Z L, Li D P, Ci L J, Zhang L, Zhang Q B. Application of in-situ characterization techniques in all-solid-state lithium batteries[J]. Acta Phys. Sin., 2021, 70(19):198102.
doi: 10.7498/aps.70.20210531
URL
|
[31] |
Zhang Q B, Gong Z L, Yang Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys. Sin., 2020, 69(22):228803.
doi: 10.7498/aps.69.20201581
URL
|
[32] |
Yang K, Chen L, Ma J, Lai C, Huang Y, Mi J, Biao J, Zhang D, Shi P, Xia H. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries[J]. Angew. Chem. Int. Ed., 2021, 60:24668-24675.
doi: 10.1002/anie.202110917
pmid: 34498788
|
[33] |
Lei D, He Y B, Huang H, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery[J]. Nat. Comm., 2019, 10:1-11.
doi: 10.1038/s41467-018-07882-8
URL
|
[34] |
Yi R W, Mao Y Y, Shen Y B, Chen L W. Self-assembled monolayers for batteries[J]. J. Am. Chem. Soc., 2021, 143(33):12897-12912.
doi: 10.1021/jacs.1c04416
URL
|