电化学(中英文) ›› 2022, Vol. 28 ›› Issue (3): 2108551. doi: 10.13208/j.electrochem.210855
所属专题: “电分析”专题文章
收稿日期:
2021-12-14
修回日期:
2022-01-04
出版日期:
2022-03-28
发布日期:
2022-01-10
Cong Xu1,3, Ying Jiang2, Ping Yu1,3, Lan-Qun Mao2,*()
Received:
2021-12-14
Revised:
2022-01-04
Published:
2022-03-28
Online:
2022-01-10
Contact:
*Tel: (86-10)62646525, E-mail:lqmao@bnu.edu.cn
摘要:
大脑是认知、情感等神经活动的物质基础。脑内神经元通过化学信号及电信号相互连接,共同构成动态而复杂的神经信号网络,实现各项神经活动。因此,对于脑神经化学分子的分析与检测有助于揭示神经生理、病理过程中的分子机制,进而发展神经系统疾病的精准诊断及治疗手段。随着各学科的融合与发展,已有多种分析技术在不同层次实现神经分子的检测。其中,电化学分析方法具有高灵敏、高时空分辨等优势,有望在活体层次上精准描述特定神经分子在神经生理或病理过程中的动态变化。本文围绕选择性以及生理兼容性两大关键问题展开,以本课题组最新研究进展为例,系统阐述了电极界面的构筑原则以及电位型检测方法的独特优势,着重介绍了抗坏血酸在神经生理和病理过程中的动态变化规律,并对脑神经电化学分析领域的发展前景进行了展望。
徐聪, 江迎, 于萍, 毛兰群. 脑神经电化学研究[J]. 电化学(中英文), 2022, 28(3): 2108551.
Cong Xu, Ying Jiang, Ping Yu, Lan-Qun Mao. Brain Electrochemistry[J]. Journal of Electrochemistry, 2022, 28(3): 2108551.
Figure 1
(A) Schematic illustration of mediated electron transfer pathways catalyzed by Fd-Glts[43]. Reproduced with permission of Ref. 43, copyright 2018 American Chemical Society. (B) Schematic illustration of aptCFE and typical current response of in vivo DA dynamics upon electrical stimulation[46]. Reproduced with permission of Ref. 46, copyright 2020 WILEY-VCH. (color on line)
Figure 2
(A) (a-b) HAADF-STEM image (a) and EXAFS fitting curve (b) of Co-N4/C. (c) Relative current ratio of H2O2 to O2 recorded by three catalysts shown in the figure, and (d) in vivo O2 fluctuation recorded by Co-N4/C-based sensor[60]. Reproduced with permission of Ref. 60, copyright 2020 American Chemical Society. (B) (a-b) Schematic illustration of fabrication process (a) and stretching process (b) of Ni SAC/N-C-based sensor. (c) Real-time monitoring of NO release[61]. Reproduced with permission of Ref. 61, copyright 2020 Springer Nature. (C) (a) Schematic illustration of online electrochemical system (OECS) with a SAC-based electrochemical sensor for continuous glucose monitoring, and (b) typical amperometric response of OECS toward microdialysate in vivo sampled from rat brain[62]. Reproduced with permission of Ref. 62, copyright 2019 Springer. (color on line)
Figure 3
(A) Schematic illustration of Pd/GDY formation via electroless deposition[64]. Reproduced with permission of Ref. 64, copyright 2015 American Chemical Society. (B) TEM image (a), HRTEM image (b), STEM image (c), FFT pattern (d) and AFM images (e-f) of exfoliated GDY[65]. Reproduced with permission of Ref. 65, copyright 2019 WILEY-VCH. (C) (a) Schematic illustration of bonding model between water molecules and carbon nanomaterials (i.e., GO and GDYO). (b) Normalized current responses of GDYO-based sensor towards different human respiratory patterns[66]. Reproduced with permission of Ref. 66, copyright 2018 WILEY-VCH. (D) (a) Construction of the mediated biosensor interface and (b) typical amperometric responses to glucose and other neurochemicals[67]. Reproduced with permission of Ref. 67, copyright 2020 American Chemical Society. (color on line)
Figure 4
(A) (a) Typical current-voltage responses acquired by using bare micropipette (black curve) and PimB-modified micro-pipette (red curve). (b) Schematic illustration of proposed three-layer model[69]. Reproduced with permission of Ref. 69, copyright 2017 American Chemical Society. (B) Schematic illustrations of (a) experimental setup of in vivo pH sensing by using PvimB-modified micropipette and (b) transient ion transport behaviors and generated ion currents under high-frequency pulse potential[72]. Reproduced with permission of Ref. 72, copyright 2021 Royal Society of Chemistry. (color on line)
Figure 5
(A) Schematic illustration of GRP sensor[80]. (B) Schematic illustration of orientation and cyclic voltammograms of untreated and ethanol-treated laccase on SWCNT/GCE[79]. Reproduced with permission of Ref. 79, copyright 2017 American Chemical Society. (C) (a) Schematic illustration of GRP sensor for in vivo sensing of AA. (b) Calibration curves of the GRP sensor before and after BSA absorption. (c) Real-time recording of cortical AA level during global cerebral ischemia (red arrow) and reperfusion (blue arrow)[80]. Reproduced with permission of Ref. 80, copyright 2018 American Chemical Society. (D) (a) Schematic illustration of the single-carbon-fiber-powered microsensor and in vivo sensing of AA with the microsensor. (b) Change in open circuit voltage (OCV) after adding AA and interferents. (c) In vivo synchronous OCV measurement with the microsensor and electrophysiological recording by the MEA[81]. Reproduced with permission of Ref. 81, copyright 2020 WILEY-VCH. (color on line)
Figure 6
(A) (a) Current signals recorded with CFEAA1.0 under different bias voltages and (b) in vivo sensing of AA in the rat cortex during SD process[84]. Reproduced with permission of Ref. 84, copyright 2019 WILEY-VCH. (B) Schematic illustration and typical current responses of in vivo AA release in rat brain by using CFEAA2.0[85]. Reproduced with permission of Ref. 85, copyright 2020 American Chemical Society. (color on line)
[1] |
Bruns D, Jahn R. Real-time measurement of transmitter release from single synaptic vesicles[J]. Nature, 1995, 377(6544):62-65.
doi: 10.1038/377062a0 URL |
[2] | Gao R X, Asano S M, Upadhyayula S, Pisarev I, Milkie D E, Liu T L, Singh V, Graves A, Huynh G H, Zhao Y X, Bogovic J, Colonell J, Ott C M, Zugates C, Tappan S, Rodriguez A, Mosaliganti K R, Sheu S H, Pasolli H A, Pang S, Xu C S, Megason S G, Hess H, Lippincott-Schw-artz J, Hantman A, Rubin G M, Kirchhausen T, Saalfeld S, Aso Y, Boydent E S, Betzig E. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution[J]. Science, 2019, 363(6424):245. |
[3] |
Mohebi A, Pettibone J R, Hamid A A, Wong J M T, Vinson L T, Patriarchi T, Tian, L, Kennedy R T, Berke J D. Dissociable dopamine dynamics for learning and motivation[J]. Nature, 2019, 570(7759):65-70.
doi: 10.1038/s41586-019-1235-y URL |
[4] |
Cserep C, Posfai B, Lenart N, Fekete R, Laszlo Z I, Lele Z, Orsolits B, Molnar G, Heindl S, Schwarcz A D, Ujvari K, Kornyei Z, Toth K, Szabadits E, Sperlagh B, Baranyi M, Csiba L, Hortobagyi T, Magloczky Z, Martinecz B, Szabo G, Erdelyi F, Szipocs R, Tamkun M M, Gesierich B, Duering M, Katona I, Liesz A, Tamas G, Denes A. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions[J]. Science, 2020, 367(6477):528.
doi: 10.1126/science.aax6752 URL |
[5] |
Phan N, Li X C, Ewing A G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging[J]. Nat. Rev. Chem., 2017, 1(6):0048.
doi: 10.1038/s41570-017-0048 URL |
[6] |
Wu F, Yu P, Mao L Q. Analytical and quantitative in vivo monitoring of brain neurochemistry by electrochemical and imaging approaches[J]. ACS Omega, 2018, 3(10):13267-13274.
doi: 10.1021/acsomega.8b02055 URL |
[7] |
Liu Z C, Tian Y. Recent advances in development of devices and probes for sensing and imaging in the brain[J]. Sci. China-Chem., 2021, 64(6):915-931.
doi: 10.1007/s11426-020-9961-3 URL |
[8] |
Ding C Q, Zhu A W, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Acc. Chem. Res., 2014, 47(1):20-30.
doi: 10.1021/ar400023s URL |
[9] | Patriarchi T, Cho J R, Merten K, Howe M W, Marley A, Xiong W H, Folk R W, Broussard G J, Liang R, Jang M J, Zhong H, Dombeck D, von Zastrow M, Nimmerjahn A, Gradinaru V, Williams J T, Tian L. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors[J]. Science, 2018, 360(6396):1420. |
[10] |
Sun F M, Zeng J Z, Jing M, Zhou J H, Feng J S, Owen S F, Luo Y C, Li F N, Wang H, Yamaguchi T, Yong Z H, Gao Y J, Peng W L, Wang L Z, Zhang S Y, Du J L, Lin D Y, Xu M, Kreitzer A C, Cui G H, Li Y L. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice[J]. Cell, 2018, 174(2):481-496.
doi: 10.1016/j.cell.2018.06.042 URL |
[11] |
Tonnesen J, Inavalli V, Nagerl U V. Super-resolution imaging of the extracellular space in living brain tissue[J]. Cell, 2018, 172(5):1108-1121.
doi: 10.1016/j.cell.2018.02.007 |
[12] |
Villette V, Chavarha M, Dimov I K, Bradley J, Pradhan L, Mathieu B, Evans S W, Chamberland S, Shi D Q, Yang R Z, Kim B B, Ayon A, Jalil A, St-Pierre F, Schnitzer M J, Bi G Q, Toth K, Ding J, Dieudonne S, Lin M Z. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice[J]. Cell, 2019, 179(7):1590-1608.
doi: S0092-8674(19)31225-5 pmid: 31835034 |
[13] |
Robinson D L, Hermans A, Seipel A T, Wightman R M. Monitoring rapid chemical communication in the brain[J]. Chem. Rev., 2008, 108(7):2554-2584.
doi: 10.1021/cr068081q pmid: 18576692 |
[14] |
Wilson G S, Johnson M A. In-vivo electrochemistry: What can we learn about living systems?[J]. Chem. Rev., 2008, 108(7):2462-2481.
doi: 10.1021/cr068082i URL |
[15] |
Wang W, Zhang S H, Li L M, Wang Z L, Cheng J K, Huang W H. Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors[J]. Anal. Bioanal. Chem., 2009, 394(1):17-32.
doi: 10.1007/s00216-009-2703-2 pmid: 19274456 |
[16] |
Bucher E S, Wightman R M. Electrochemical analysis of neurotransmitters[J]. Annu. Rev. Anal. Chem., 2015, 8(1):239-261.
doi: 10.1146/annurev-anchem-071114-040426 URL |
[17] | Xue Y F, Xiao T F, Jiang Y N, Wu F, Yu P, Mao L Q. Progress of in vivo electrochemical analysis of brain neurochemistry[J]. Chinese J. Anal. Chem., 2019, 47(10):1443-1454. |
[18] |
Song E M, Li J H, Won S M, Bai W B, Rogers J A. Materials for flexible bioelectronic systems as chronic neural interfaces[J]. Nat. Mater., 2020, 19(6):590-603.
doi: 10.1038/s41563-020-0679-7 URL |
[19] |
Rodeberg N T, Sandberg S G, Johnson J A, Phillips P E M, Wightman R M. Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry[J]. ACS Chem. Neurosci., 2017, 8(2):221-234.
doi: 10.1021/acschemneuro.6b00393 pmid: 28127962 |
[20] |
Roberts J G, Sombers L A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond[J]. Anal. Chem., 2018, 90(1):490-504.
doi: 10.1021/acs.analchem.7b04732 pmid: 29182309 |
[21] |
Puthongkham P, Venton B J. Recent advances in fast-scan cyclic voltammetry[J]. Analyst, 2020, 145(4):1087-102.
doi: 10.1039/c9an01925a pmid: 31922162 |
[22] |
Heien M, Khan A S, Ariansen J L, Cheer J F, Phillips P E M, Wassum K M, Wightman R M. Real-time measurement of dopamine fluctuations after cocaine in brain of behaving rats[J]. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(29):10023-10028.
doi: 10.1073/pnas.0504657102 URL |
[23] | Xu J C, Qin G G, Luo F, Wang L N, Zhao R, Li N, Yuan J H, Fang X H. Automated stoichiometry analysis of single-molecule fluorescence imaging traces via deep learning[J]. J. Am. Chem. Soc., 2019, 141(17):6979-6985. |
[24] | Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, Boehm A, Deubner J, Jaeckel Z, Seiwald K, Dovzhenko A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay T L, Prinz M, Palme K, Simons M, Diester I, Brox T, Ronneberger O. U-Net: deep learning for cell counting, detection, and morphometry[J]. Nat. Methods, 2019, 16(1):67-70. |
[25] |
Wang H D, Rivenson Y, Jin Y Y, Wei Z S, Gao R, Gunaydin H, Bentolila L A, Kural C, Ozcan A. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nat. Methods, 2019, 16(1):103-110.
doi: 10.1038/s41592-018-0239-0 URL |
[26] |
Xue Y F, Ji W L, Jiang Y N, Yu P, Mao L Q. Deep learning for voltammetric sensing in a living animal brain[J]. Angew. Chem. Int. Ed., 2021, 60(44):23777-23783.
doi: 10.1002/anie.202109170 URL |
[27] |
Zhang M N, Yu P, Mao L Q. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry[J]. Acc. Chem. Res., 2012, 45(4):533-543.
doi: 10.1021/ar200196h URL |
[28] | Wu F, Yu P, Mao L Q. Bioelectrochemistry for in vivo analysis: Interface engineering toward implantable electrochemical biosensors[J]. Curr. Opin. Electrochem., 2017, 5(1):152-157. |
[29] |
Zhan L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Acc. Chem. Res., 2018, 51(3):688-696.
doi: 10.1021/acs.accounts.7b00543 URL |
[30] |
Lin Y Q, Liu K, Yu P, Xiang L, Li X C, Mao L Q. A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide[J]. Anal. Chem., 2007, 79(24):9577-9583.
doi: 10.1021/ac070966u URL |
[31] |
Lin Y Q, Zhu N N, Yu P, Su L, Mao L Q. Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion[J]. Anal. Chem., 2009, 81(6):2067-2074.
doi: 10.1021/ac801946s URL |
[32] |
Huang P C, Mao J J, Yang L F, Yu P, Mao L Q. Bioelectrochemically active infinite coordination polymer nanoparticles: one-pot synjournal and biosensing property[J]. Chem. - Eur. J., 2011, 17(41):11390-11393.
doi: 10.1002/chem.201101634 URL |
[33] |
Zhuang X M, Wang D L, Lin Y Q, Yang L F, Yu P, Jiang W, Mao L Q. Strong interaction between imidazolium-based polycationic polymer and ferricyanide: toward redox potential regulation for selective in vivo electrochemical measurements[J]. Anal. Chem., 2012, 84(4):1900-1906.
doi: 10.1021/ac202748s URL |
[34] |
Lu X L, Cheng H J, Huang P C, Yang L F, Yu P, Mao L Q. Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring[J]. Anal. Chem., 2013, 85(8):4007-4013.
doi: 10.1021/ac303743a URL |
[35] |
Ma W J, Jiang Q, Yu P, Yang L F, Mao L Q. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements[J]. Anal. Chem., 2013, 85(15):7550-7557.
doi: 10.1021/ac401576u URL |
[36] |
Lin Y Q, Yu P, Hao J, Wang Y X, Ohsaka T, Mao L Q. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia[J]. Anal. Chem., 2014, 86(8):3895-3901.
doi: 10.1021/ac4042087 URL |
[37] |
Zhang Z P, Hao J, Xiao T F, Yu P, Mao L Q. Online ele-ctrochemical systems for continuous neurochemical measurements with low-potential mediator-based electroche-mical biosensors as selective detectors[J]. Analyst, 2015, 140(15):5039-5047.
doi: 10.1039/C5AN00593K URL |
[38] |
Wang Y X, Mao L. Recent advances in analytical metho-dology for in vivo electrochemistry in mammals[J]. Electroanalysis, 2016, 28(2):265-276.
doi: 10.1002/elan.201500376 URL |
[39] |
Xiao T F, Wu F, Hao J, Zhang M N, Yu P, Mao L Q. In vivo analysis with electrochemical sensors and biosensors[J]. Anal. Chem., 2017, 89(1):300-313.
doi: 10.1021/acs.analchem.6b04308 URL |
[40] | Wei H, Wu F, Yu P, Mao L Q. Advances in electrochemical biosensors for in vivo analysis[J]. Chinese J. Anal. Chem., 2019, 47(10):1466-1479. |
[41] |
Xu C, Wu F, Yu P, Mao L Q. In vivo electrochemical sensors for neurochemicals: recent update[J]. ACS Sens., 2019, 4(12):3102-3118.
doi: 10.1021/acssensors.9b01713 URL |
[42] | Pan C, Wei H, Han Z J, Wu F, Mao L Q. Enzymatic electrochemical biosensors for in situ neurochemical measurement[J]. Curr. Opin. Electrochem., 2020, 19:162-167. |
[43] |
Wu F, Yu P, Yang X T, Han Z J, Wang M, Mao L Q. Exploring ferredoxin-dependent glutamate synthase as an enzymatic bioelectrocatalyst[J]. J. Am. Chem. Soc., 2018, 140(40):12700-12704.
doi: 10.1021/jacs.8b08020 URL |
[44] |
Dunn M R, Jimenez R M, Chaput J C. Analysis of aptamer discovery and technology[J]. Nat. Rev. Chem., 2017, 1(10):0076.
doi: 10.1038/s41570-017-0076 URL |
[45] |
Yu P, He X L, Zhang L, Mao L Q. Dual recognition unit strategy improves the specificity of the Adenosine Triphosphate (ATP) aptamer biosensor for cerebral ATP assay[J]. Anal. Chem., 2015, 87(2):1373-1380.
doi: 10.1021/ac504249k URL |
[46] |
Hou H F, Jin Y, Wei H, Ji W L, Xue Y F, Hu J B, Zhang M N, Jiang Y, Mao L Q. A generalizable and noncovalent strategy for interfacing aptamers with a microelectrode for the selective sensing of neurotransmitters in vivo[J]. Angew. Chem., Int. Ed., 2020, 59(43):18996-19000.
doi: 10.1002/anie.202008284 URL |
[47] |
Zhao X, Wang K Q, Li B, Li C Q, Lin Y Q. Preparation, surface modification and in vivo/single cell electroanalytical application of microelectrode[J]. Prog. Chem., 2017, 29(10):1173-1183.
doi: 10.7536/PC170620 |
[48] | Hu K K, Liu Y L, Oleinick A, Mirkin M V, Huang W H, Amatore C. Nanoelectrodes for intracellular measurements of reactive oxygen and nitrogen species in single living cells[J]. Curr. Opin. Electrochem., 2020, 22:44-50. |
[49] |
Cheng S W, Zhang L, Zhang M N. In vivo detection of hydrogen sulfide in brain and cell[J]. Electroanalysis, 2021, 33:1-15.
doi: 10.1002/elan.202060235 URL |
[50] |
Cheng H J, Li L J, Zhang M N, Jiang Y, Yu P, Ma F R, Mao L Q. Recent advances on in vivo analysis of ascorbic acid in brain functions[J]. Trac-Trends Anal. Chem., 2018, 109:247-259.
doi: 10.1016/j.trac.2018.10.017 URL |
[51] | Ji W L, Zhang M N, Mao L Q. Recent advances on in vivo electrochemical analysis of Vitamin C in rat brain[J]. Chinese J. Anal. Chem., 2019, 47(10):1559-1571. |
[52] |
Rebec G V, Centore J M, White L K, Alloway K D. Ascorbic-acid and the behavioral-response to haloperidol -implications for the action of antipsychotic-drugs[J]. Science, 1985, 227(4685):438-440.
pmid: 4038426 |
[53] |
Rice M E. Ascorbate regulation and its neuroprotective role in the brain[J]. Trends Neurosci., 2000, 23(5):209-216.
pmid: 10782126 |
[54] |
Zhang M N, Liu K, Gong K P, Su L, Chen Y, Mao L Q. Continuous on-line monitoring of extracellular ascorbate depletion in the rat striatum induced by global ischemia with carbon nanotube-modified glassy carbon electrode integrated into a thin-layer radial flow cell[J]. Anal. Chem., 2005, 77(19):6234-6242.
doi: 10.1021/ac051188d URL |
[55] |
Zhang M N, Liu K, Xiang L, Lin Y Q, Su L, Mao L Q. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain[J]. Anal. Chem., 2007, 79(17):6559-6565.
doi: 10.1021/ac0705871 URL |
[56] |
Xiang L, Yu P, Hao J, Zhang M N, Zhu L, Dai L M, Mao L Q. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo[J]. Anal. Chem., 2014, 86(8):3909-3914.
doi: 10.1021/ac404232h pmid: 24678660 |
[57] |
Xiao T F, Jiang Y N, Ji W L, Mao L Q. Controllable and reproducible sheath of carbon fibers with single-walled carbon nanotubes through electrophoretic deposition for in vivo electrochemical measurements[J]. Anal. Chem., 2018, 90(7):4840-4846.
doi: 10.1021/acs.analchem.8b00303 URL |
[58] |
Cui X J, Li W, Ryabchuk P, Junge K, Beller M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts[J]. Nat. Catal., 2018, 1(6):385-397.
doi: 10.1038/s41929-018-0090-9 URL |
[59] |
Wang A Q, Li J, Zhang T. Heterogeneous single-atom catalysis[J]. Nat. Rev. Chem., 2018, 2(6):65-81.
doi: 10.1038/s41570-018-0010-1 URL |
[60] |
Wu F, Pan C, He C T, Han Y H, Ma W J, Wei H, Ji W L, Chen W X, Mao J J, Yu P, Wang D S, Mao L Q, Li Y D. Single-atom Co-N4 Electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing[J]. J. Am. Chem. Soc., 2020, 142(39):16861-16867.
doi: 10.1021/jacs.0c07790 URL |
[61] |
Zhou M, Jiang Y, Wang G, Wu W J, Chen W X, Yu P, Lin Y Q, Mao J J, Mao L Q. Single-atom Ni-N4 provides a robust cellular NO sensor[J]. Nat. Commun., 2020, 11(1):3188.
doi: 10.1038/s41467-020-17018-6 pmid: 32581225 |
[62] |
Hou H F, Mao J J, Han Y H, Wu F, Zhang M N, Wang D S, Mao L Q, Li Y D. Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing[J]. Sci. China-Chem., 2019, 62(12):1720-1724.
doi: 10.1007/s11426-019-9605-0 URL |
[63] |
Guo S Y, Yan H L, Wu F, Zhao L J, Yu P, Liu H B, Li Y L, Mao L Q. Graphdiyne as electrode material: tuning electronic state and surface chemistry for improved electrode reactivity[J]. Anal. Chem., 2017, 89(23):13008-13015.
doi: 10.1021/acs.analchem.7b04115 URL |
[64] |
Qi H T, Yu P, Wang Y X, Han G C, Liu H B, Yi Y P, Li Y L, Mao L Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity[J]. J. Am. Chem. Soc., 2015, 137(16):5260-5263.
doi: 10.1021/ja5131337 URL |
[65] |
Yan H L, Yu P, Han G C, Zhang Q H, Gu L P, Yi Y P, Liu H B, Li Y L, Mao L Q. High-yield and damage-free exfoliation of layered Graphdiyne in aqueous phase[J]. Angew. Chem. Int. Ed., 2019, 58(3):746-750.
doi: 10.1002/anie.201809730 URL |
[66] |
Yan H L, Guo S Y, Wu F, Yu P, Liu H B, Li Y L, Mao L Q. Carbon atom hybridization matters: ultrafast humidity response of Graphdiyne oxides[J]. Angew. Chem. Int. Ed., 2018, 57(15):3922-3926.
doi: 10.1002/anie.201709417 URL |
[67] |
Guo S Y, Yu P, Li W Q, Yi Y P, Wu F, Mao L Q. Electron hopping by interfacing semiconducting Graphdiyne nanosheets and redox molecules for selective electrocatalysis[J]. J. Am. Chem. Soc., 2020, 142(4):2074-2082.
doi: 10.1021/jacs.9b13678 URL |
[68] |
Yu P, He X L, Mao L Q. Tuning interionic interaction for highly selective in vivo analysis[J]. Chem. Soc. Rev., 2015, 44(17):5959-5968.
doi: 10.1039/C5CS00082C URL |
[69] |
He X L, Zhang K L, Li T, Jiang Y N, Yu P, Mao L Q. Micrometer-Scale ion current rectification at Polyelectrolyte brush-modified micropipets[J]. J. Am. Chem. Soc., 2017, 139(4):1396-1399.
doi: 10.1021/jacs.6b11696 URL |
[70] |
He X L, Zhang K L, Liu Y, Wu F, Yu P, Mao L Q. Chao-tropic monovalent anion-induced rectification inversion at nanopipettes modified by polyimidazolium brushes[J]. Angew. Chem. Int. Ed., 2018, 57(17):4590-4593.
doi: 10.1002/anie.201800335 URL |
[71] |
Zhang K L, He X L, Liu Y, Yu P, Fei J J, Mao L Q. Highly selective cerebral ATP assay based on micrometer scale ion current rectification at Polyimidazolium-modified micropipettes[J]. Anal. Chem., 2017, 89(12):6794-6799.
doi: 10.1021/acs.analchem.7b01218 URL |
[72] |
Zhang K L, Wei H, Xiong T Y, Jiang Y N, Ma W J, Wu F, Yu P, Mao L Q. Micrometer-scale transient ion transport for real-time pH assay in living rat brains[J]. Chem. Sci., 2021, 12(21):7369-7376.
doi: 10.1039/D1SC00061F URL |
[73] |
Hefti F, Felix D. Chronoamperometry in vivo - Does it interfere with spontaneous neuronal-activity in the brain[J]. J. Neurosci. Methods, 1983, 7(2):151-156.
doi: 10.1016/0165-0270(83)90077-8 URL |
[74] | Zhao L J, Zheng W, Mao L Q. Recent advances of ion-selective electrode for in vivo analysis in brain neurochemistry[J]. Chinese J. Anal. Chem., 2019, 47(10):1480-1491. |
[75] |
Hao J, Xiao T F, Wu F, Yu P, Mao L Q. High antifouling property of ion-selective membrane: toward in vivo monitoring of pH change in live brain of rats with membrane-coated carbon fiber electrodes[J]. Anal. Chem., 2016, 88(22):11238-11243.
doi: 10.1021/acs.analchem.6b03854 URL |
[76] |
Zhao L J, Jiang Y N, Hao J, Wei H, Zheng W, Mao L Q. Graphdiyne oxide enhances the stability of solid contact-based ionselective electrodes for excellent in vivo analysis[J]. Sci. China-Chem., 2019, 62(10):1414-1420.
doi: 10.1007/s11426-019-9516-5 URL |
[77] |
Zhao L J, Jiang Y, Wei H, Jiang Y N, Ma W J, Zheng W, Cao A M, Mao L Q. In vivo measurement of calcium ion with solid-state ion-selective electrode by using shelled hollow carbon nanospheres as a transducing layer[J]. Anal. Chem., 2019, 91(7):4421-4428.
doi: 10.1021/acs.analchem.8b04944 |
[78] |
Wu F, Yu P, Mao L. Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry[J]. Chem. Soc. Rev., 2017, 46(10):2692-2704.
doi: 10.1039/C7CS00148G URL |
[79] |
Wu F, Su L, Yu P, Mao L Q. Role of organic solvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis[J]. J. Am. Chem. Soc., 2017, 139(4):1565-1574.
doi: 10.1021/jacs.6b11469 URL |
[80] |
Wu F, Cheng H J, Wei H, Xiong T Y, Yu P, Mao L Q. Galvanic redox potentiometry for self-driven in vivo measurement of neurochemical dynamics at open-circuit potential[J]. Anal. Chem., 2018, 90(21):13021-13029.
doi: 10.1021/acs.analchem.8b03854 URL |
[81] |
Yu P, Wei H, Zhong P P, Xue Y F, Wu F, Liu Y, Fei J J, Mao L Q. Single-carbon-fiber-powered microsensor for in vivo neurochemical sensing with high neuronal compatibility[J]. Angew. Chem. Int. Ed., 2020, 59(50):22652-22658.
doi: 10.1002/anie.202010195 URL |
[82] |
Yue Q W, Li X C, Wu F, Ji W L, Zhang Y, Yu P, Zhang M N, Ma W J, Wang M, Mao L Q. Unveiling the role of DJ-1 protein in vesicular storage and release of catechola-mine with nano/micro-tip electrodes[J]. Angew. Chem. Int. Ed., 2020, 59(27):11061-11065.
doi: 10.1002/anie.202002455 URL |
[83] |
Zhang Z P, Zhao L Z, Lin Y Q, Yu P, Mao L Q. Online electrochemical measurements of Ca2+ and Mg2+ in rat brain based on divalent cation enhancement toward electrocatalytic NADH oxidation[J]. Anal. Chem., 2010, 82(23):9885-9891.
doi: 10.1021/ac102605n URL |
[84] |
Xiao T F, Wang Y X, Wei H, Yu P, Jiang Y, Mao L Q. Electrochemical monitoring of propagative fluctuation of ascorbate in the live rat brain during spreading depolarization[J]. Angew. Chem. Int. Ed., 2019, 58(20):6616-6619.
doi: 10.1002/anie.201901035 URL |
[85] |
Jin J, Ji W L, Li L J, Zhao G, Wu W J, Wei H, Ma F R, Jiang Y, Mao L Q. Electrochemically probing dynamics of ascorbate during cytotoxic edema in living rat brain[J]. J. Am. Chem. Soc., 2020, 142(45):19012-19016.
doi: 10.1021/jacs.0c09011 URL |
[86] |
Wang K, Xiao T F, Yue Q W, Wu F, Yu P, Mao L Q. Selective amperometric recording of endogenous ascorbate secretion from a single rat adrenal chromaffin cell with pretreated carbon fiber microelectrodes[J]. Anal. Chem., 2017, 89(17):9502-9507.
doi: 10.1021/acs.analchem.7b02508 pmid: 28776368 |
[87] |
Zhang N, Liu J X, Ma F R, Yu L S, Lin Y Q, Liu K, Mao L Q. Change of extracellular ascorbic acid in the brain cortex following ice water vestibular stimulation: an on-line electrochemical detection coupled with in vivo microdialysis sampling for guinea pigs[J]. Chin. Med. J., 2008, 121(12):1120-1125.
doi: 10.1097/00029330-200806020-00016 URL |
[88] |
Liu J X, Yu P, Lin Y Q, Zhou N, Li T, Ma F R, Mao L Q. In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus[J]. Anal. Chem., 2012, 84(12):5433-5438.
doi: 10.1021/ac301087v URL |
[89] | Lyu Y, Zhang Y W, Tan L, Ji W L, Yu P, Mao L Q, Zhou F. Continuously monitoring of concentration of extracellular ascorbic acid in spinal cord injury model[J]. Chinese J. Anal. Chem., 2017, 45(11):1595-1599. |
[90] |
Xin Y, Song Y, Xiao T F, Zhang Y H, Li L J, Li T, Zhang K, Liu J X, Ma F R, Mao L Q. In vivo recording of ascorbate and neural excitability in medial vestibular nucleus and hippocampus following ice water vestibular stimulation in rats[J]. Electroanalysis, 2018, 30(7):1287-1292.
doi: 10.1002/elan.201800187 URL |
[91] |
Zhang Y W, Hou G J, Ji W L, Rao F, Zhou R B, Gao S, Mao L Q, Zhou F. Persistent oppression and simple decompression both exacerbate spinal cord ascorbate levels[J]. Int. J. Med. Sci., 2020, 17(9):1167-1176.
doi: 10.7150/ijms.41289 URL |
[92] | Wang M L, Song Y, Liu J X, Du Y L, Xiong S, Fan X, Wang J, Zhang Z D, Mao L Q, Ma F R. Role of the caudate-putamen nucleus in sensory gating in induced tinnitus in rats[J]. Neural Regener. Res., 2021, 16(11):2250-2256. |
[93] |
Zhang Y H, Li L J, Li T, Xin Y, Liu J X, Ma F R, Mao L Q. In vivo measurement of the dynamics of norepinephrine in an olfactory bulb following ischemia-induced olfactory dysfunction and its responses to dexamethasone treatment[J]. Analyst, 2018, 143(21):5247-5254.
doi: 10.1039/C8AN01300D URL |
[94] |
Du Y L, Liu J X, Jiang Q, Duan Q C, Mao L Q, Ma F R. Paraflocculus plays a role in salicylate-induced tinnitus[J]. Hear. Res., 2017, 353:176-184.
doi: 10.1016/j.heares.2017.06.013 URL |
[95] |
Xiong S, Song Y, Liu J X, Du Y L, Ding Y J, Wei H, Bryan K, Ma F R, Mao L Q. Neuroprotective effects of MK-801 on auditory cortex in salicylate-induced tinnitus: Involvement of neural activity, glutamate and ascorbate[J]. Hear. Res., 2019, 375:44-52.
doi: 10.1016/j.heares.2019.01.021 URL |
[96] | Fan X, Song Y, Du Y L, Liu J X, Xiong S, Zhao G, Wang M L, Wang J, Ma F R, Mao L Q. Participation of the anterior cingulate cortex in sodium salicylate-induced tinnitus[J]. Otology & Neurotology, 2021, 42(8):E1134-E1142. |
[97] |
Xin Y, Zhang Z P, Yu P, Ma F R, Mao L Q. In vivo ele-ctrochemical recording of continuous change of magnesium in medial vestibular nucleus following vertigo induced by ice water vestibular stimulation[J]. Sci. China-Chem., 2013, 56(2):256-261.
doi: 10.1007/s11426-012-4567-0 URL |
[98] | Feng T T, Zhang S, Zhang L, Zhang M N. Recent advances on antifouling of microelectrode for in vivo electrochemistry[J]. Chinese J. Anal. Chem., 2019, 47(10):1612-1621. |
[1] | 杨 帆, 邓培林, 韩优嘉, 潘 静, 夏宝玉. 电化学二氧化碳还原中的铜基催化剂[J]. 电化学(中英文), 2019, 25(4): 426-444. |
[2] | 高敦峰,阎程程,汪国雄,包信和. Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响[J]. 电化学(中英文), 2018, 24(6): 757-765. |
[3] | 乔文磊,杜晓,高凤凤,郑君兰,李莎莎,郝晓刚. 一步共沉积法制备ZSM-5/PANI/PSS电活性膜及其电控选择性分离重金属Pb2+的动力学特性[J]. 电化学(中英文), 2018, 24(2): 143-153. |
[4] | 谭青龙,王海宁,卢善富,梁大为,武春晓,相艳. 表面修饰模式对Nafion离子选择性影响及在VRFB中的应用[J]. 电化学(中英文), 2017, 23(4): 409-419. |
[5] | 廖艳梅,武倩倩,张安伦,朱英红,马淳安. C-H键选择性直接电氧化研究[J]. 电化学(中英文), 2017, 23(3): 276-282. |
[6] | 单惠霞,曾振平, 叶礼贤, 束峰. 压力对带有pH值可调聚电解质刷的仿生纳米孔中离子选择性的影响[J]. 电化学(中英文), 2017, 23(1): 64-71. |
[7] | 陈如意, 张朋乐, 廖森梁, 李馨然, 王忠德, 郝晓刚. 电化学法控制聚吡咯/α-磷酸锆/碳毡电极去除水中低浓度铅离子[J]. 电化学(中英文), 2015, 21(4): 344-352. |
[8] | 李文卓*,许定佳,王骏,王健龙. 硫化银/凹凸棒的Ag+选择电极[J]. 电化学(中英文), 2014, 20(3): 277-281. |
[9] | 蔡文达, 蔡坤铭, 林昌健, 付燕. 双相不锈钢的选择性腐蚀研究(英文)[J]. 电化学(中英文), 2003, 9(2): 170-176. |
[10] | 王周成,张瀛洲,周绍民,辜志俊,张志刚,苏方腾. 铜在离子选择性涂层下腐蚀行为的阻抗谱研究[J]. 电化学(中英文), 1997, 3(3): 271-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||