[1] |
Maiyalagan T, Jarvis K A, Therese S, Ferreira P J, Manthiram A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions[J]. Nat. Commun., 2014, 5: 3949.
doi: 10.1038/ncomms4949
URL
|
[2] |
Yuan Y, Wang J H, Adimi S, Shen H J, Thomas T, Ma R G, Attfield J P, Yang M H. Zirconium nitride catalysts surpass platinum for oxygen reduction[J]. Nat. Mater., 2020, 19(3): 282-286.
doi: 10.1038/s41563-019-0535-9
pmid: 31740792
|
[3] |
Li B (李冰), Ma J X (马建新), Qiao J L (乔锦丽). Study on the proton exchange membrane friction fuel cell based on non-platinum catalyst[M]. Shanghai(上海): Tongji University Press(同济大学出版社), 2017: 7-10.
|
[4] |
Zhang L P, Niu J B, Li M T, Xia Z H. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells[J]. J. Phys. Chem. C, 2014, 118(7): 3545-3553.
doi: 10.1021/jp410501u
URL
|
[5] |
Zhang H J, Cai C, Geng J, Yao W, Ma Z F, Yang J. Co, N, S tri-doped carbon as an effective electrocatalyst for oxygen reduction reaction prepared from high-sulfur raw coal[J]. J. Electrochem. Soc., 2020, 167(2): 024520.
doi: 10.1149/1945-7111/ab6fed
URL
|
[6] |
Zhang D Y, Chen W X, Li Z, Chen Y J, Zheng L R, Gong Y, Li Q H, Shen R P, Han Y H, Cheong W C, Gu L, Li Y D. Correction: Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction[J]. Chem. Commun., 2018, 54(38): 4882.
doi: 10.1039/C8CC90183J
URL
|
[7] |
Browne M P, Sofer Z, Pumera M. Layered and two dimensional metal oxides for electrochemical energy conversion[J]. Energy Environ. Sci., 2019, 12(1): 41-58.
doi: 10.1039/C8EE02495B
URL
|
[8] |
Yang Y, Zeng R, Xiong Y, DiSalvo F J, Abruña H D. Rock-salt-type MnCO2O3/C as efficient oxygen reduction electrocatalysts for alkaline fuel cells[J]. Chem. Mater., 2019, 31(22): 9331-9337.
doi: 10.1021/acs.chemmater.9b02801
|
[9] |
Xiao W, Wang D L, Lou X W. Shape-controlled synjournal of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction[J]. J. Phys. Chem. C, 2010, 114(3): 1694-1700.
doi: 10.1021/jp909386d
URL
|
[10] |
Cao R, Lee J S, Liu M L, Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater., 2012, 2(7): 816-829.
doi: 10.1002/aenm.201200013
URL
|
[11] |
Li C, Han X P, Cheng F Y, Hu Y X, Chen C C, Chen J. Phase and composition controllable synjournal of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis[J]. Nat. Commun., 2015, 6: 7345.
doi: 10.1038/ncomms8345
URL
|
[12] |
Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011, 10(10): 780-786.
doi: 10.1038/nmat3087
URL
|
[13] |
Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Earth-abundant nanomaterials for oxygen reduction[J]. Angew. Chem. Int. Ed., 2016, 55(8): 2650-76.
doi: 10.1002/anie.201504830
URL
|
[14] |
Wang T, Chen Z X, Chen Y G, Yang L J, Yang X D, Ye J Y, Xia H P, Zhou Z Y, Sun S G. Identifying the active site of N-doped graphene for oxygen reduction by selective chemical modification[J]. ACS Energy Lett., 2018, 3(4): 986-991.
doi: 10.1021/acsenergylett.8b00258
URL
|
[15] |
Wang H, Shao Y, Mei S L, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J Y. Polymer-derived heteroatom-doped porous carbon materials[J]. Chem. Rev., 2020, 120(17): 9363-9419.
doi: 10.1021/acs.chemrev.0c00080
URL
|
[16] |
Wang X W, Yang C, Li J, Chen X A, Yang K Q, Yu X C, Lin D J, Zhang Q C, Wang S, Wang J C, Xia Z H, Jin H L. Insights of heteroatoms doping-enhanced bifunctionalities on carbon based energy storage and conversion[J]. Adv. Funct. Mater., 2021, 31(11): 2009109.
doi: 10.1002/adfm.v31.11
URL
|
[17] |
Guo D Y, Wang J H, Zhang L, Chen X, Wan Z X, Xi B. Strategic atomic layer deposition and electrospinning of cobalt sulfide/nitride composite as efficient bifunctional electrocatalysts for overall water splitting[J]. Small, 2020, 16(35): 2002432.
doi: 10.1002/smll.v16.35
URL
|
[18] |
Li D C, Dai L, Huang S, Wang Z L. Structure and growth of aligned carbon nanotube films by pyrolysis[J]. Chem. Phys. Lett., 2000, 316(5-6): 349-355.
doi: 10.1016/S0009-2614(99)01334-2
URL
|
[19] |
Lin D W, Yu Y, Li L Y, Zou M Z, Zhang J. Growth of semiconducting single-walled carbon nanotubes array by precisely inhibiting metallic tubes using ZrO2 nanoparticles[J]. Small, 2021: 2006605
|
[20] |
Chen Y Y, Xu C X, Hou Z H, Zhou M J, He B H, Wang W, Ren W Q, Liu Y P, Chen L, Xu W Y. 3D N, S-co-doped carbon nanotubes/graphene/MnS ternary hybrid derived from Hummers' method for highly efficient oxygen reduction reaction[J]. Mater. Today Energy, 2020, 16: 100402
|
[21] |
Nam G, Jang H, Sung J, Chae S, Soule L, Zhao B, Cho J, Liu M. Evaluation of the volumetric activity of the air electrode in a zinc-air battery using a nitrogen and sulfur co-doped metal-free electrocatalyst[J]. ACS Appl. Mater. Interfaces, 2020, 12(51): 57064-57070.
doi: 10.1021/acsami.0c16876
URL
|
[22] |
Sriram B, Baby J N, Wang S F, Roselin R M, Govindasamy M, George M. Eutectic solvent-mediated synjournal of NiFe-LDH/sulfur-doped carbon nitride arrays: investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance[J]. ACS Sustainable Chem. Eng., 2020, 8(48): 17772-17782.
doi: 10.1021/acssuschemeng.0c06070
URL
|
[23] |
Zhang M, Gao J P, Hong W, Wang X X, Tian Q, An Z L, Wang L Y, Yao H D, Liu Y, Zhao X X, Qiu H X. Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts[J]. J. Colloid Interface Sci., 2019, 537: 238-246.
doi: 10.1016/j.jcis.2018.11.022
URL
|
[24] |
Ashok A, Kumar A, Ponraj J, Mansour S A. Preparation of mesoporous/microporous MnCO2O4 and nanocubic MnCr2O4 using a single step solution combustion synjournal for bifunction oxygen electrocatalysis[J]. J. Electrochem. Soc., 2020, 167(5): 054507.
doi: 10.1149/1945-7111/ab679d
URL
|
[25] |
Wei L C, Qiu L J, Liu Y Y, Zhang J M, Yuan D S, Wang L. Mn-Doped Co-N-C dodecahedron as a bifunctional electrocatalyst for highly efficient Zn-Air batteries[J]. ACS Sustain. Chem. Eng., 2019, 7(16): 14180-14188.
doi: 10.1021/acssuschemeng.9b02884
URL
|
[26] |
Li G L, Cheng G C, Yang B B, Liu C D, Yuan L F, Chen W W, Xu X C, Hao C. One-step construction of porous mixed spinel-type MnCoxO4/NCNT as an efficient bi-fun-ctional oxygen electrocatalyst[J]. Int. J. Hydrog. Energy, 2018, 43(42): 19451-19459.
doi: 10.1016/j.ijhydene.2018.08.175
URL
|
[27] |
Guo D Y, Wei H F, Chen X, Liu M L, Ding F, Yang Z, Yang Y, Wang S, Yang K Q, Huang S M. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(34): 18193-18206.
doi: 10.1039/C7TA04728B
URL
|