电化学(中英文) ›› 2021, Vol. 27 ›› Issue (6): 646-657. doi: 10.13208/j.electrochem.210210
收稿日期:
2021-02-10
修回日期:
2021-04-07
出版日期:
2021-12-28
发布日期:
2021-04-14
通讯作者:
孙升
E-mail:mgissh@t.shu.edu.cn
基金资助:
Received:
2021-02-10
Revised:
2021-04-07
Published:
2021-12-28
Online:
2021-04-14
Contact:
Sheng Sun
E-mail:mgissh@t.shu.edu.cn
摘要:
锂离子电池的全电池建模模拟对现代新能源领域的发展至关重要。伪二维(P2D)电化学模型是最常使用的全电池模拟模型,但一直被用于输入为电流,输出为电压的模拟中。本文基于P2D模型,通过对内电位、电极电位以及电池端电压的详细讨论,首次采用电压边界条件,利用COMSOL仿真软件完成了实验中常用的两电极体系和三电极体系的循环伏安法建模和模拟。并对比分析了两/三电极体系中扫描速率、颗粒半径、电极锂扩散速率以及最大嵌锂浓度这四个参数对循环伏安曲线形状的影响。结果表明,循环伏安测试时扫描速率越大,循环伏安曲线的峰值电流越大;固相锂扩散速率越大、电活性颗粒半径越小、最大嵌锂浓度越大,峰值电流越大。在相同的测试条件下,三电极体系比两电极体系的循环伏安图对称性更好,电流响应更大,并且颗粒半径、锂扩散速率及最大嵌锂浓度这三个参数对峰值电流的影响也更为明显。
蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657.
Xue-Fan Cai, Sheng Sun. Cyclic Voltammetric Simulations on Batteries with Porous Electrodes[J]. Journal of Electrochemistry, 2021, 27(6): 646-657.
表1
锂离子全电池模型参数
Parameter | Negative electrode | Separator | Positive electrode | Unit | |
---|---|---|---|---|---|
Geometry and volume fraction | Thickness | 1.83×10-4 | 5.2×10-5 | 1.83×10-4 | m |
Particle radius | 12.5 | 10; 40; 70 | μm | ||
Active material volume fraction | 0.471 | 0.297 | |||
Electrolyte phase volume fraction | 0.503 | 1 | 0.63 | ||
Conductive filler volume fraction | 0.026 | 0.073 | |||
Concentration | Initial solid phase concentration | 20450 | 0 | mol·m-3 | |
Maximum solid phase concentration | 31507 | 18860; 22860; 26860 | mol·m-3 | ||
Initial electrolyte salt concentration | 2000 | 2000 | 2000 | mol·m-3 | |
Kinetic and transport properties | Solid phase Li+ diffusion coefficient | 3.9×10-10 | 1×10-9; 1×10-10; 1×10-11 | cm2·s-1 | |
Electrolyte phase Li+ diffusion coefficient | 7.5×10-7 | cm2·s-1 | |||
Solid phase conductivity | 100 | 3.8 | S·m-1 | ||
Electrolyte phase conductivity | f(Cl/Clref) | S·m-1 | |||
Electrode open-circuit voltage | f(Cs/Csmax) | 0 | V | ||
Charge-transfer coefficient | 0.5,0.5 | 0.5,0.5 | |||
Li+ transference number | 0.363 | ||||
Film resistance of the SEI | 10 | 0 | Ω·cm2 | ||
Faraday constant | 96500 | C·mol-1 | |||
Ideal gas constant | 8.31 | J·mol-1·K-1 | |||
temperature | 298 | K |
[1] |
Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33): 1800561.
doi: 10.1002/adma.v30.33 URL |
[2] | Song Y H(宋永华), Yang Y X(阳岳希), Hu Z C(胡泽春). Present status and development trend of batteries for electric vehicles[J]. Power Sys. Techno.(电网技术), 2011, 35(4): 1-7. |
[3] | Yan J D(闫金定). Current status and development analysis of lithium-ion batteries[J]. Acta Aeronaut. Astronaut. Sin.(航空学报), 2014, 35(10): 2767-2775. |
[4] | Huang X J(黄学杰), Zhao W W(赵文武), Shao Z G(邵志刚), Chen L Q(陈立泉). Development strategies for new energy materials in China[J/OL]. Strategic Study of CAE(中国工程科学), 2020, 22(5): 60-67. |
[5] | Yang Y S(杨裕生). A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem.(电化学), 2020, 26(4): 443-463. |
[6] |
Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. J. Electrochem. Soc., 1993, 140(6): 1526-1533.
doi: 10.1149/1.2221597 URL |
[7] |
Fuller T F, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell[J]. J. Electrochem. Soc., 1994, 141(1): 1-10.
doi: 10.1149/1.2054684 URL |
[8] |
Doyle M, Newman J. The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochim. Acta, 1995, 40(13/14): 2191-2196.
doi: 10.1016/0013-4686(95)00162-8 URL |
[9] |
Santhanagopalan S, Guo Q Z, Ramadass P, White R E. Review of models for predicting the cycling performance of lithium ion batteries[J]. J. Power Sources, 2006, 156(2): 620-628.
doi: 10.1016/j.jpowsour.2005.05.070 URL |
[10] |
Xiao M, Choe S Y. Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles[J]. J. Power Sources, 2012, 218: 357-367.
doi: 10.1016/j.jpowsour.2012.05.103 URL |
[11] |
Kemper P, Li S E, Kum D. Simplification of pseudo two dimensional battery model using dynamic profile of lithium concentration[J]. J. Power Sources, 2015, 286: 510-525.
doi: 10.1016/j.jpowsour.2015.03.134 URL |
[12] |
Farag M, Fleckenstein M, Habibi S. Continuous piecewise-linear, reduced-order electrochemical model for lithium-ion batteries in real-time applications[J]. J. Power Sources, 2017, 342: 351-362.
doi: 10.1016/j.jpowsour.2016.12.044 URL |
[13] |
Lamorgese A, Mauri R. Tellini B. Electrochemical-thermal P2D aging model of a LiCoO2/graphite cell: Capacity fade simulations[J]. J. Energy Storage, 2018, 20: 289-297.
doi: 10.1016/j.est.2018.08.011 URL |
[14] | Ge Y M(葛亚明), Li J(李军). Parameters identification of lithium-ion batterie model and simulation of the discharge voltage curves[J]. J. Ordnance Equip. Eng.(兵器装备工程学报), 2018, 39(6): 188-191. |
[15] | Wang X X(王晓晓), Zhou Z R(周子睿), Shan Q(单强), Zhang Z M(张增明), Huang J(黄俊), Liu Y W(刘欲文), Chen S L(陈胜利). Porous-electrode theory of lithium ion battery: old paradigm and new challenge[J]. J.electrochem.(电化学), 2020, 26(5): 596-606. |
[16] |
Levi M D, Aurbach D. The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling[J]. J. Electroanal. Chem., 1997, 421(1/2): 79-88.
doi: 10.1016/S0022-0728(96)04832-2 URL |
[17] |
Davies T J, Compton R G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[J]. J. Electroanal. Chem., 2005, 585(1): 63-82.
doi: 10.1016/j.jelechem.2005.07.022 URL |
[18] |
Streeter L, Wildgoose G G, Shao L D, Compton R G. Cy-clic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes[J]. Sensor Actuat. B - Chem., 2008, 133(2): 462-466.
doi: 10.1016/j.snb.2008.03.015 URL |
[19] |
Pérez-Brokate C F, Caprio D D, Mahéé, Férona D, Lamare J D. Cyclic voltammetry simulations with cellular automata[J]. J. Comput. Sci., 2015, 11: 269-278.
doi: 10.1016/j.jocs.2015.08.005 URL |
[20] |
Gavilán-Arriazu E M, Mercer M P, Pinto O A, Oviedo O A, Barraco D E, Hoster H E, Leiva E P M. Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics[J]. J. Solid State Electrochem., 2020, 24(11/12): 3279-3287.
doi: 10.1007/s10008-020-04717-9 URL |
[21] | Zhang S L(张胜利), Yu Z B(余仲宝), Han Z X(韩周祥). Research and development of lithium-ion batteries[J]. Battery Ind.(电池工业), 1999, 4(1): 26-28. |
[22] | Liu L(刘璐), Wang H L(王红蕾), Zhang Z G(张志刚). Working principle of lithium ion battery and its main materials[J]. Sci. & Technol. Inf.(科技信息), 2009, 23: 454, 484. |
[23] | Trasatti S. The absolute electrode potential: an explanatory note[J]. Pure & Appl Chem., 1986, 58(7): 955-966. |
[24] | Zha Q X(查全性). Introduction to kinetics of electrode process[M]. Science Press Co., Ltd.(科学出版社), 2002. |
[25] | Gu H B(顾宏邦). A wrong concept of electrode potential[J]. J. Shanxi Univ.(山西大学学报), 1979, 2: 163-174. |
[26] |
Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. J. Electrochem. Soc., 1996, 143(6): 1890-1903.
doi: 10.1149/1.1836921 URL |
[27] |
Smith K, Wang C Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles[J]. J. Power Sources, 2006, 160(1): 662-673.
doi: 10.1016/j.jpowsour.2006.01.038 URL |
[28] |
Pang H, Mou L J, Guo L, Zhang F Q. Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries[J]. Electrochim. Acta, 2019, 307: 474-487.
doi: 10.1016/j.electacta.2019.03.199 |
[29] | Chaturvedi N A, Klein R, Christensen J, Ahmed J, Kojic A. Algorithms for advanced battery-management systems[J]. IEEE Control Syst. Mag., 2010, 30(3): 49-68. |
[30] |
Prada E, Domenico D D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F. Simplified electrochemical and thermal model of LiFePO4-Graphite Li-ion batteries for fast charge applications[J]. J. Electrochem. Soc., 2012, 159(9): A1508-A1519.
doi: 10.1149/2.064209jes URL |
[31] |
Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Trans. Control Syst. Technol., 2013, 21(2): 289-301.
doi: 10.1109/TCST.2011.2178604 URL |
[32] | Pang H(庞辉). Multi-scale modeling and its simplification method of Li-ion battery based on electrochemical model[J]. Acta Phys. Sin.(物理学报), 2017, 66(23): 238801. |
[33] | Chen H N, Liu Y, Zhang X F, Lan Q, Chu Y, Li Y L, Wu Q X. Single-component slurry based lithium-ion flow battery with 3D current collectors[J]. J. Power Sour-ces, 2021, 485: 229319. |
[34] | Chen D, Tan H T, Rui X H, Zhang Q, Feng Y Z, Geng H B, Li C C, Huang S M, Yu Y. Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery[J]. Infomat, 2019, 1(2): 251-259. |
[1] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[2] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[3] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[4] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[5] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[6] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[7] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[8] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[9] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[10] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[11] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
[12] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
[13] | 李丽娟, 朱振东, 代娟, 王蓉蓉, 彭文. 锂离子电池正极材料Li[NixCoyMnz]O2 (x = 0.6, 0.85)相变对比[J]. 电化学(中英文), 2021, 27(4): 405-412. |
[14] | 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学(中英文), 2021, 27(2): 177-184. |
[15] | 侯旭, 何欣, 李劼. “Water-in-salt”聚合物电解质制备及其电化学性能研究[J]. 电化学(中英文), 2021, 27(2): 202-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||