电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 443-463. doi: 10.13208/j.electrochem.200441
收稿日期:
2020-04-13
修回日期:
2020-06-10
出版日期:
2020-08-28
发布日期:
2020-06-10
通讯作者:
杨裕生
E-mail:yangyush32@126.com
基金资助:
Received:
2020-04-13
Revised:
2020-06-10
Published:
2020-08-28
Online:
2020-06-10
Contact:
YANG Yu-sheng
E-mail:yangyush32@126.com
摘要:
本文回顾了22年来作者的电化学储能研究活动,共分三个部分. 第一部分叙述高比能量、高比功率储能器件研究,包括锂硫电池研究(硫复合正极材料、锂硫电池制作、锂硼合金作为锂硫电池负极、硫-锂离子电池新体系)、超级电容器研究(超级活性炭、以酚醛树脂为原料制备电容炭、碳纳米管阵列中寄生准电容储能材料、氧化镍干凝胶准电容储能材料、归纳出电容炭材料的性能要求、电容器研制、确定“第四类”超级电容器)、锂离子电池研究(锂离子电池与可再生燃料电池的对决、双变价元素正极材料、磷酸钴锂正极材料、高功率锂离子电池的制作). 第二部分叙述规模储能电池研究,包括液流电池新体系研究(蓄电与电化学合成的双功能液流电池、全金属化合物单液流电池、有机化合物正极的单液流电池)、致力于振兴铅酸电池(推广铅蓄电池新技术、铅炭电池的研究、铅酸电池新型板栅的研究),储能电池(站)的经济效益计算方法. 第三部分叙述电动汽车发展路线研究,包括氢能燃料电池电动汽车、纯电动汽车与混合动力汽车、对我国电动汽车发展路线的建议、力争电动汽车补贴的合理化、坚守电动汽车“节能减排”宗旨、提出“发电直驱电动车”. 最后的结束语谈了三点感悟.
中图分类号:
杨裕生. 电化学储能研究22年回顾[J]. 电化学(中英文), 2020, 26(4): 443-463.
YANG Yu-sheng. A Review of Electrochemical Energy Storage Researches in the Past 22 Years[J]. Journal of Electrochemistry, 2020, 26(4): 443-463.
表1
电容炭产品性能对比
Moisture/% | Ash/% | Tap density/ (g·mL-1) | Specific surface area/ (m2·g-1) | Carbon content/% | Specific pacitance in water system/ (F·g-1) | Specific capacitance in organic system/ (F·g-1) | Mesopore ratio/% | Average diameter/nm | |
---|---|---|---|---|---|---|---|---|---|
Our sample | 0.90 | 0.28 | 0.42 | 2508 | 99.68 | 254 | 148 | 19.4 | 1.73 |
Sample from Japan | 1.08 | 0.27 | 0.41 | 2201 | 99.73 | 247 | 140 | 15.3 | 1.84 |
Sample from Korea | 2.40 | 0.31 | 0.40 | 2432 | 99.57 | 267 | 154 | 18.9 | 1.74 |
表2
超级电容器的分类
Classification of capacitors | I | II | III | IV | |
---|---|---|---|---|---|
Name of capacitor | Electric double layer capacitor | Pseudocapacitor | Hybrid capacitor | Battery type supercapacitor | |
A | B | ||||
Energy storage mechanism of the first electrode | Electric double layer | Pseudocapacitance | Electric double layer | Electric double layer | Electric double layer + Redox reaction |
Energy storage mechanism of the second electrode | Electric double layer | Pseudocapacitance | Pseudocapacitance | Electric double layer + Redox reaction | Electric double layer + Redox reaction |
[1] | Wang Y K (王维坤). Study on organic polysulfides-the novel cathode materials for lithium batteries[D]. Research Institute of Chemical Defense (防化研究院), 2003. |
[2] | Wang Y S (王维坤), Yu Z B (余仲宝), Wang A B (王安邦), et al. Research progress and ideas of lithium sulfur battery[C]// The 14th National Electrochemical Conference, Yangzhou, China, 2007: H-002. |
[3] |
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
doi: 10.1038/nmat2460 URL pmid: 19448613 |
[4] | Wang Y K (王维坤), Wang A B (王安邦), Jin Z Q (金朝庆), et al. Development and strategy for cathode materials of advanced lithium sulfur batteries[J]. Energy Storage Science and Technology (储能科学与技术), 2017,6(3):1-15. |
[5] |
Wang M J, Wang W K, Wang A B, et al. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chemical Communication, 2013,49:10263-10265.
doi: 10.1039/c3cc45412f URL |
[6] |
Duan B C, Wang W K, Zhao H L, et al. Li-B alloy as anode material for lithium/sulfur battery[J]. ECS Electrochemistry Letters, 2013,2(6):A47-A51.
doi: 10.1149/2.005306eel URL |
[7] | Liu R J (刘荣江). Study on performance of the electrodes for lithium sulfur secondary battery[D]. University of Science and Technology Beijing (北京科技大学), 2012. |
[8] |
Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014,10(21):4257-4263.
doi: 10.1002/smll.201401837 URL pmid: 25074801 |
[9] |
Liu Q, Zhou S S, Tang C, et al. Li-B alloy as an anode material for stable and long life lithium metal batteries[J]. Energies, 2018,11(10):2512.
doi: 10.3390/en11102512 URL |
[10] |
Liu S S, Yang J, Yin L C, et al. Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries[J]. Electrochimica Acta, 2011,56(24):8900-8905.
doi: 10.1016/j.electacta.2011.07.109 URL |
[11] |
Duan B C, Wang W K, Wang A B, et al. A new lithium secondary battery system: the sulfur/lithium-ion battery[J]. Journal of Materials Chemistry A, 2014,2(2):308-314.
doi: 10.1039/c3ta13782a URL |
[12] | Shi L, Liu Y G, Wang W K, Wang A, et al. High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte[J]. Journal of Alloys & Compounds, 2017,723:974-982. |
[13] |
Wang J L, Yang J, Xie J Y, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002,14(13/14):963-965.
doi: 10.1002/(ISSN)1521-4095 URL |
[14] |
Wang K, Guan Y P, Jin Z Q, et al. Te0.045S0.955PAN composite with high average discharge voltage for Li-S battery[J], Journal of Energy Chemistry, 2019, 39:249-255.
doi: 10.1016/j.jechem.2019.03.010 URL |
[15] |
Jin Z Q, Liu Y G, Wang W K, et al. A new insight into the lithium storage machanism of sulfurized polyacrylonitrile with no soluble intermediates[J]. Energy storage materials, 2018,14:272-278.
doi: 10.1016/j.ensm.2018.04.013 URL |
[16] | Xu B (徐斌), Cao G P ( 曹高萍), Yang Y S (杨裕生), et al. Preparation of high specific capacity carbon electrode materials from apricot shell for electrochemical capacitors[C]// The 11th National Electrochemical Conference, Nanjing, China, 2001. |
[17] | Wen Y H (文越华), Cao G P (曹高萍), Cheng J (程杰), et al. Nanoporous glassy carbon — A new electrode material for supercapacitors I. Effect of curing temperature on its structure and properties[J]. New Carbon Materials (新型炭材料), 2003,18(3):219-224. |
[18] |
Wen Y H, Cao G P, Yang Y S. Studies on nanoporous glassy carbon as a new electrochemical capacitor material[J]. Journal of Power Sources, 2005,148:121-128.
doi: 10.1016/j.jpowsour.2005.02.001 URL |
[19] |
Wen Y H, Cao G P, Cheng J, et al. Correlation of capacitance with the pore structure for nanoporous glassy carbon electrodes[J]. Journal of The Electrochemical Society, 2005,152(9):A1770-A1775.
doi: 10.1149/1.1984447 URL |
[20] | Zhang J L, Zhang W F, Zhang H, et al. Facile preparation of water soluble phenol formaldehyde resin-derived activated carbon by Na2CO3 activation for high performance supercapacitors[J]. Materials Letters, 2017,206:67-70. |
[21] | Zhang J L, Zhang W F, Han M F, et al. Synjournal of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors[J]. Microporous and Mesoporous Materials, 2018,270:204-210. |
[22] | Zhang H (张浩). Preparation and performance of carbon nanotube arrry and carbon nanotube array-based composite electrodes for electrochemical capacitors[D]. Research Institute of Chemical Defense (防化研究院), 2008. |
[23] | Yang Y S (杨裕生), Cao G P (曹高萍). Adjustment to properties of porous carbon for electrochemical capacitors[J]. Battery Bimonthly (电池), 2006,36(1):34-36. |
[24] | Cheng J (程杰). Studies of the electrochemical capacitors based on activated carbons and Ni(OH)2 xerogels[D]. Research Institute of Chemical Defense (防化研究院), 2006. |
[25] | 杨裕生. 关于可再生氢-氧燃料电池的议论[J]. 化学与物理电源系统, 2008,5:4-7. |
[26] | Si Y C, Zhao L, Yu Z B, et al. A novel amorphous Fe2V4O13 as cathode material for lithium secondary batteries[J]. Materials Letters, 2012,72:145-147. |
[27] | Si Y C (司玉昌). Research on cathode materials containing V and Fe oxides with double valence changes for lithium secondary batteries[D]. Research Institute of Che-mical Defense (防化研究院), 2013. |
[28] | Wang Y (王跃). Preparation and improvement of electrochemical performance of LiCoPO4 as high voltage cathode material[D]. University of Science and Technology Beijing (北京科技大学), 2018. |
[29] |
Wen Y H, Cheng J, Ma P H, Yang Y S. Bifunctional redox flow battery-1 V(III)/V(II) - glyoxal(O2) system[J]. Electrochimica Acta, 2008,53(9):3514-3522.
doi: 10.1016/j.electacta.2007.11.073 URL |
[30] | Wen Y H, Cheng J, Xun Y, et al. Bifunctional redox flow battery-2. V(III)/V(II)-L-cystine(O2) system[J]. Electrochimica Acta 2008,53(20):6018-6023. |
[31] |
Wen Y H, Cheng J, Ning S Q, et al. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction[J]. Journal of Power Sources, 2009,188(1):301-307.
doi: 10.1016/j.jpowsour.2008.11.054 URL |
[32] |
Pletcher D, Wills R. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II)[J]. Physical Chemistry Chemical Physics, 2004,6(8):1779-1785.
doi: 10.1039/b401116c URL |
[33] |
Liu D Y (刘东阳), Cheng J (程杰), Pan J Q (潘军青), et al. Studies on the all-lead flow batteries in HBF4 solution[J]. Acta Physico - Chimica Sinica (物理化学学报), 2011,27(11):2571-2576.
doi: 10.3866/PKU.WHXB20111105 URL |
[34] |
Cheng J, Zhang L, Yang Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochemistry Communications, 2007,9(11):2639-2642.
doi: 10.1016/j.elecom.2007.08.016 URL |
[35] | Xu Y (徐艳). Study of the novel hydroquinone/quinone flow batteries[D]. Research Institute of Chemical Defense (防化研究院), 2010. |
[36] | Wang L Y, Zhang H, Cao G P, et al. Effect of activated carbon surface functional groups on nano-lead electrodeposition and hydrogen evolution and its applications in lead-carbon batteries[J]. Electrochimica Acta, 2015,186:654-663. |
[37] |
Wang L Y, Zhang W F, Gu L, et al. Tracking the morphology evolution of nano-lead electrodeposits on the internal surface of porous carbon and its influence on lead-carbon batteries[J]. Electrochimica Acta, 2016,222:376-384.
doi: 10.1016/j.electacta.2016.10.189 URL |
[38] |
Wang L Y, Zhang H, Zhang W F, et al. A new nano lead-doped mesoporous carbon composite as negative electrode additives for ultralong-cyclability lead-carbon batteries[J]. Chemical Engineering Journal, 2018,337:201-209.
doi: 10.1016/j.cej.2017.12.089 URL |
[39] |
Zhang S K, Zhang H, Cheng J, et al. Novel polymer-graphite composite grid as a negative current collector for lead-acid batteries[J]. Journal of Power Sources, 2016,334:31-38.
doi: 10.1016/j.jpowsour.2016.09.097 URL |
[40] | Yang Y S (杨裕生). Grid of lead acid battery and lead acid battery[P]. Patent number: ZL201921251389.1 (中国). |
[41] | Yang Y S (杨裕生), Cheng J (程杰), Cao G P (曹高萍). A gauge for direct economic benefits of energy storage devices[J]. Battery Bimonthly (电池), 2011,41(1):19-21. |
[42] | Yang Y S (杨裕生). Discussion on electric vehicles and electrochemical energy storage[M]. Science Press (科学出版社), 2012. |
[43] | Yang Y S (杨裕生). Re-discussion on electric vehicles and electrochemical energy storage[M]. Science Press (科学出版社), 2017. |
[44] | Yang Y S (杨裕生). An energy-saving electric vehicle driven directly by electric power generation[P]. Patent number: 2017107099346 (中国). |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[4] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[5] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[6] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[7] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[8] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[9] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[10] | 张衡, 夏力行, 姜珊, 王福芝, 谭占鳌. 氮掺杂石墨毡对水系醌基氧化还原液流电池性能的影响[J]. 电化学(中英文), 2023, 29(12): 2203231-. |
[11] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[12] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[13] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[14] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[15] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||