欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2019, Vol. 25 ›› Issue (4): 497-503.  doi: 10.13208/j.electrochem.180944

• 研究论文 • 上一篇    下一篇

氧化还原刻蚀铜表面对二氧化碳电催化还原性能的研究

张宝花,张进涛*   

  1. (山东大学化学与化工学院,山东 济南 250100)
  • 收稿日期:2018-10-08 修回日期:2019-03-27 出版日期:2019-08-28 发布日期:2019-08-28
  • 通讯作者: http://faculty.sdu.edu.cn/ees/zh_CN/index.htm https://publons.com/researcher/1520473/jintao-zhang/ E-mail:jtzhang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21503116)、山东省泰山学者计划项目(No. tsqn20161004)资助

Regulation of Copper Surface via Redox reactions for Enhancing Carbon Dioxide Electroreduction

HANG Bao-hua, ZHANG Jin-tao*   

  1. (Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.)
  • Received:2018-10-08 Revised:2019-03-27 Published:2019-08-28 Online:2019-08-28

摘要:

 大规模化石燃料的使用排放了大量的二氧化碳(CO2),导致环境中二氧化碳的含量急剧增加. 为了降低大气中二氧化碳的含量,以电催化的方法将二氧化碳转化为有用的化工原料和燃料是解决能源和环境问题的重要途径. 本文主要利用氧化还原刻蚀法,在铜表面形成复合纳米结构,用于二氧化碳的电催化还原反应研究. 首先,作者通过一定浓度的三氯化铁(FeCl3)溶液与铜片的氧化还原反应,在刻蚀铜表面时形成具有立方体结构的氯化亚铜纳米材料,用于二氧化碳的电催化还原反应. 为了研究反应时间对催化性能的影响,作者通过改变反应时间(1、2、3和4 h)合成了不同结构的铜基催化剂. 研究发现,在反应3 h后,Cu-3h催化剂对二氧化碳的电催化还原具有较小的起始电压(-0.3 V vs. RHE)和较大的电流密度值,表现出了较强的还原能力. 经检测,所得到主要还原产物为一氧化碳(CO)和甲烷(CH4). 在-0.6 V时,二氧化碳催化还原的法拉第效率可达到60%,表明以氧化还原法刻蚀铜表面具有较好的改善二氧化碳电催化还原的能力.

关键词: 铜纳米材料, 电催化, 二氧化碳还原, 法拉第效率

Abstract:

 A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to 4 h. When used as electrocatalysts for CO2 reduction reaction (CO2RR), the Cu-3h catalyst exhibited the best catalytic performance, showing the smallest onset potential (-0.3 V vs. RHE) and largest current density. Additionally, the Faradaic efficiencies for CO and CH4 at -0.6 V vs. RHE reached around 60%. The in-situ redox reaction provides a promising approach to regulate the Cu surface composition and structure for enhancing CO2RR.

Key words:  copper nanomaterial, electrocatalysis, carbon dioxide reduction, Faradaic efficiency

中图分类号: