[1] |
Frankel G S, Pitting corrosion of metals - A review of the critical factors[J]. Journal of The Electrochemical Society, 1998,145(6):2186-2198.
|
[2] |
Burstein G T, Liu C, Souto R M, et al. Origins of pitting corrosion[J]. Corrosion Engineering Science and Technology, 2004,39(1):25-30.
|
[3] |
Duffo G S, Farina S B, Giordano C M. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures[J]. Electrochimica Acta, 2009,54(3):1010-1020.
|
[4] |
Bouazaze H, Huet F, Nogueira R P. A new approach for monitoring corrosion and flow characteristics in oil/brine mixtures[J]. Electrochimica Acta, 2005,50(10):2081-2090.
|
[5] |
Gonzalez J A, Miranda J M, Birbilis N, et al. Electrochemical techniques for studying corrosion of reinforcing steel: Limitations and advantages[J]. Corrosion, 2005,61(1):37-50.
|
[6] |
Zou Z W, Song G L, Wang Z M, et al. A single wire-electrode AC probe for monitoring instantaneous electrochemical parameters and accumulated change of the electrode[J]. Electrochimica Acta, 2019,321: UNSP134664.
|
[7] |
Song G L( 宋光铃), Zou Z W( 邹振文), Wang Z M( 王子明), et al. Electrochemical corrosion testing equipment and electrochemical corrosion testing method[P]. 中国专利,公开日:2019.12.31,公开号:CN108362637B.
|
[8] |
Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000,56(9):935-941.
|
[9] |
Corvo F, Minotas J, Delgado J, et al. Changes in atmospheric corrosion rate caused by chloride ions depending on rain regime[J]. Corrosion Science, 2005,47(4):883-892.
|
[10] |
Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009,51(5):997-1006.
|
[11] |
Dong J H( 董俊华), Ke W( 柯伟). The accelerated test of simulated atmospheric corrosion and the rust evolution of low carbon steel[J]. Journal of Electrochemistryl( 电化学), 2009,15(2):170-178.
|
[12] |
Liu Y W, Wang Z Y, Cao G W, et al. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment[J]. Materials Chemistry and Physics, 2017,198:243-249.
doi: 10.1016/j.matchemphys.2017.05.043
URL
|
[13] |
Shi S Y( 施善友), Wang B Y( 王本义). The potential - pH diagrams and selection on technological condition[J]. Journal of Hefei University of Technology(Natural Science)l( 合肥工业大学学报(自然科学版)), 1991,14(3):99-106.
|
[14] |
Ramanauskas R, Quintana P, Maldonado L, et al. Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings[J]. Surface & Coatings Technology, 1997,92(1/2):16-21.
|
[15] |
Spathis P, Poulios I. The corrosion and photocorrosion of zinc and zinc oxide coatings[J]. Corrosion Science, 1995,37(5):673-680.
|
[16] |
Song G L. Theoretical analysis of the measurement of polarisation resistance in reinforced concrete[J]. Cement & Concrete Composites, 2000,22(6):407-415.
|
[17] |
Jin A J. Cathodic protection effect of reinforced concrete beam specimens with zinc sacrificial anode in marine environment[J]. Advanced Materials Research, 2015,1125:345-349.
|
[18] |
Liu A Q( 刘安强), Xiao K( 肖葵), Li X G( 李晓刚), et al. Comparison of corrosion behavior of pure Zn and Zn-Al alloy coating in serious Xisha marine atmosphere environment[J]. Thermal Spray Technologyl( 热喷涂技术), 2015,7(4):46-52.
|