[1] Shi K M(史坤明), Guo J M(郭建伟), Wang J(王佳). Impedance of oxygen reduction reaction on Pt catalyst Pt/C[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 542-548.
[2] Cai G X(蔡光旭), Guo J W(郭建伟), Wang J(王佳). The progress of electrochemical impedance spectroscopy (EIS) on the study of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress(化工进展), 2014, 33(1): 56-63.
[3] Cai G X, Guo J W, Wang J, et al. Negative resistance for methanol electro-oxidation on platinum/carbon (Pt/C) catalyst investigated by an electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2015, 276(1): 279-290.
[4] Cao C N (曹楚南), Zhang J Q(张鉴清). An introduction to electrochemical impedance spectroscopy(电化学阻抗谱导论)[M]. Beijing: Science Press(科学出版社), 2002: 2.
[5] Giner-Sanz J J, Ortega E M, Pérez-Herranz V. Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination[J]. Electrochimica Acta, 2015, 174(1): 1290-1298.
[6] Xia S X, Lin R, Cui X, et al. The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11380-11390.
[7] Rezaei Niya S M, Phillips R K, Hoorfar M. Sensitivity analysis of the impedance characteristics of proton exchange membrane fuel cells[J]. Fuel Cells, 2016, 16(5): 547-556.
[8] Chandesris M, Robin C, Gerard M, et al. Investigation of the difference between the low frequency limit of the impedance spectrum and the slope of the polarization curve[J]. Electrochimica Acta, 2015, 180(1): 581-590.
[9] Dotelli G, Ferrero R, Stampino P G, et al. Analysis and compensation of PEM fuel cell instabilities in low-frequency EIS Measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(7): 1693-1700.
[10] Guo J W(郭建伟),Mao Z Q(毛宗强),Xu J M(徐景明). Studies on the electrochemical behavior of polymer electrolyte membrane fuel cell (PEMFC) by AC impedance method[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2003, 24(8): 1477-1481.
[11] Li G C, Pickup P G. Measurement of single electrode potentials and impedances in hydrogen and direct methanol PEM fuel cells[J]. Electrochimica Acta, 2004, 49(24): 4119-4126.
[12] Engebretsen E, Hinds G, Meyer Q, et al. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics[J]. Journal of Power Sources, 2018, 382(1): 38-44.
[13] Narayanan H, Basu S. Development of simple diagnostic tool for proton exchange membrane fuel cell using reference electrodes in sub cells in series[J]. International Journal of Hydrogen Energy, 2016, 41(18): 7659-7665.
[14] Mainka J, Maranzana G, Dillet J, et al. S. On the estimation of high frequency parameters of Proton Exchange Membrane Fuel Cells via Electrochemical Impedance Spectroscopy[J]. Journal of Power Sources, 2014, 253(1): 381-391.
[15] Mohammad S, Niya R, Hoorfar M. Process modeling of the ohmic loss in proton exchange membranefuel cells[J]. Electrochimica Acta, 2014, 120(1): 193-203.
[16] Depernet D, Narjiss A, Gustin F, et al. Integration of electrochemical impedance spectroscopy functionality in proton exchange membrane fuel cell power converter[J]. International Journal of Hydrogen Energy, 2016, 41(11): 5378-5388.
[17] Futter G A, Gazdzicki P, Friedrich K A, et al. Physical modeling of polymer-electrolyte membrane fuel cells: Understanding water management and impedance spectra[J]. Journal of Power Sources, 2018, 391(1): 148-161.
[18] Jin B D(金宝舵), Guo J W(郭建伟), Xie X F(谢晓峰), et al. Effect of operating condition on cathodic EIS parameters in a DMFC[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2008, 29(11): 2258-2261.
[19] Li J C(黎家纯), Xie X F(谢晓峰), Guo J W(郭建伟), et al. Research of AC impedance of dynamic behavior of direct methanol fuel cell[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2008, 29(3): 564-568.
[20] Yang D J(杨代军), Wang F J(汪飞杰), Li B(李冰), et al. Accelerated aging test and performance recovery analysis of PEMFC stack[J]. Journal of TongJi University(Natural Science) (同济大学学报(自然科学版)), 2015, 43(2): 273-278.
[21] Hong P, Li J Q, Xu L F, et al. Modeling and simulation of parallel DC/DC converters for online AC impedance estimation of PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3004-3014.
[22] Ferreira R B, Falc?觔o D S, Oliveira V B, et al. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment[J]. Electrochimica Acta, 2017, 224 (1): 337-345.
[23] Latorrata S, Pelosato R, Stampino P G, et al. Use of electrochemical impedance spectroscopy for the evaluation of performance of PEM fuel cells based on carbon cloth gas diffusion electrodes[J]. Journal of Spectroscopy, 2018, 3254375.
[24] Boaventura M, Alves I, Ribeirinha P, et al. The influence of impurities in high temperature polymer electrolyte membrane fuel cells performance[J]. International Journal of Hydrogen Energy, 2016, 41(43): 19771-19780.
[25] Park T, Chang I, Lee Y H, et al. Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation[J]. Energy, 2014, 66(1): 77-81.
[26] Hu M, Cao G. Research on the performance differences between a standard PEMFC single cell and transparent PEMFC single cells using optimized transparent flow field unite Part I: Design optimization of a transparent flow field unit[J]. International Journal of Hydrogen Energy, 2016 ,41(4): 2955 -2966.
[27] Hu M, Cao G. Research on the performance differences between a standard PEMFC single cell and transparent PEMFC single cells using optimized transparent flow field unite,Part II: Performance comparison and explanation[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2967-2980.
[28] Antonacci P, Leea J, Yip R, et al. Identifying water thickness in various layers in PEMFCs through EIS and X-ray radiography[J]. ECS Transactions, 2014, 61(12): 57-67.
[29] Kong I M, Jung A, Kim M S. Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells[J]. Applied Energy, 2016, 176(1): 149-156.
[30] Wang Z Q, Qu L J, Zeng Y C, et al. Investigation of water transport in fuel cells using water transport plates and solid plates[J]. RSC Advances, 2018, 8(3): 1503-1510.
[31] Jao T C, Sasabe T, Uemura S, et al. Temperature and humidification effect on mass transfer of PEMFC via EIS and soft X-ray measurement[J]. ECS Transactions, 2016, 75(14): 179-188.
[32] Tant S, Rosini S, Thivel P X, et al. An algorithm for diagnosis of proton exchange membrane fuel cells by electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2014, 135(1): 368-379.
[33] Zhiani M, Majidi S, Silva V B, et al. Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses[J]. Energy, 2016, 97(1): 560-567.
[34] Zhang Q, Lin R, Techer L, et al. Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution[J]. Energy, 2016, 115(1): 550-560.
[35] Rohendi D, Majlan E H, Mohamad A B, et al. Effects of temperature and backpressure on the performance degradation of MEA in PEMFC[J]. International Journal of Hydrogen Energy, 2015, 40(34): 10960-10968.
[36] Asghari S, Reza M, Khorasani A, et al. Investigation of self-humidified and dead-ended anode proton exchange membrane fuel cell performance using electrochemical impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2016,41(28): 12347-12357.
[37] Strahl S, Husar A, Riera J. Experimental study of hydrogen purge effects on performance and efficiency of an open-cathode proton exchange membrane fuel cell system[J]. Journal of Power Sources, 2014, 248(1): 474-482.
[38] Tang Y F, Mu S C, Yu S X, et al. In situ and ex situ studies on the degradation of Pd/C catalyst for proton exchange membrane fuel cells[J]. Journal of Fuel Cell Science and Technology, 2014, 11(5): 051004.
[39] Zhang X, Guo L J, Liu H T. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests[J]. Journal of Power Sources, 2015, 296(1): 327-334.
[40] Wang F J, Yang D J, Li B, et al. Investigation of the recoverable degradation of PEM fuel cell operated under drive cycle and different humidities[J]. International Journal of Hydrogen Energy, 2014, 39(26): 14441-14447.
[41] Shi W Y(石伟玉), Liu C F(刘常福), Mu J Y(慕竣屹), et al. Long term test and analysis of PEMFCs under simulation on-road load cycles[J]. Chinese Journal of Power Sources(电源技术), 2016, 40(1): 77-80.
[42] Lin R, Cui X, Shan J, et al. Investigating the effect of start-up and shut-down cycles on the performance of the proton exchange membrane fuel cell by segmented cell technology[J]. International Journal of Hydrogen Energy, 2015, 40(43): 14952-14962.
[43] Liu M Y, Wang C, Zhang J B, et al. Diagnosis of membrane electrode assembly degradation with drive cycle test technique[J]. International Journal of Hydrogen Energy, 2014, 39(26): 14370-14375.
[44] Strahl S, Gasamans N, Llorca J, et al. Experimental analysis of a degraded open-cathode PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2014, 39(10): 5378-5387.
[45] Yang Y P, Zhang X, Guo L J, et al. Degradation mitigation effects of pressure swing in proton exchange membrane fuel cells with dead-ended anode[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24435-24447.
[46] Zhou S(周苏), Han Q L(韩秋玲), Hu Z(胡哲). Pattern recognition method for proton exchange membrane fuel cell fault diagnosis[J]. Journal of TongJi University(Natural Science) (同济大学学报(自然科学版)), 2017, 45(3): 408-412.
[47] Su H, Jao T C, Barron O, et al. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J]. Journal of Power Sources, 2014, 267(1): 155-159.
[48] Mack F, Laukenmann R, Galbiati S, et al. Electrochemical impedance spectroscopy as a diagnostic tool for high-temperature PEM fuel cells[J]. ECS Transactions, 2015, 69(17): 1075-1087.
[49] Giotakos P I. Neophytides simulation of HT-PEMFC AC impedance spectra: Relaxation impedance and identification of oxygen reduction reaction mechanism[J]. ECS Transactions, 2017, 80(8): 37-56.
[50] Chen C Y, Huang K P, Yan W M, et al. Development and performance diagnosis of a high power air-cooled PEMFC stack[J]. International Journal of Hydrogen Energy, 2016, 41(27): 11784-11793.
[51] Shan J, Lin R, Xia S X, et al. Local resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycle[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4239 -4250.
[52] Meyer Q, Ashton S, Curnick O, et al. Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging[J]. Journal of Power Sources, 2014, 254(1): 1-9.
[53] Lechartier E, Laffly E, Pera M C, et al. Proton exchange membrane fuel cell behavioral model suitable for prognostics[J]. International Journal of Hydrogen Energy, 2015, 40(26): 8384-8397.
[54] Chevalier S, Auvity B, Olivier J C, et al. Detection of cells state-of-health in PEM fuel cell stack using EIS measurements coupled with multi physics modeling[J]. Fuel Cells, 2014, 14(3): 416-429.
[55] Homayouni H, DeVaal J, Golnaraghi F, et al. Voltage reduction technique for use with electrochemical impedance spectroscopy in high-voltage fuel cell and battery systems[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 418-431.
[56] Niya S M R, Hoorfar M. Measurement, semi-process and process modeling of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(14): 4868-4873.
[57] Ritzberger D, Jakubek S. Nonlinear data-driven identification of polymer electrolyte membrane fuel cells for diagnostic purposes: A Volterra series approach[J]. Journal of Power Sources, 2017, 361(1): 144-152.
[58] Russo L, Sorrentino M, Polverino P, et al. Application of Buckingham π theorem for scaling-up oriented fast modelling of Proton Exchange Membrane Fuel Cell impedance[J]. Journal of Power Sources, 2017, 353(1): 277-286.
[59] Sorrentino A, Vidakovic-Kocha T, Hanke-Rauschenbachc R, et al. Concentration-alternating frequency response: A new method for studying polymer electrolyte membrane fuel cell dynamics[J]. Electrochimica Acta, 2017, 243(1): 53-64. |