电化学(中英文) ›› 2020, Vol. 26 ›› Issue (3): 328-337. doi: 10.13208/j.electrochem.190318
陈嘉卉1, 钟晓斌2, 何超1, 王晓晓2, 许清池1*(), 李剑锋1,2*()
收稿日期:
2019-03-18
修回日期:
2019-04-05
出版日期:
2020-06-28
发布日期:
2019-04-08
通讯作者:
许清池,李剑锋
E-mail:xuqingchi@xmu.edu.cn;li@xmu.edu.cn
基金资助:
CHEN Jia-hui1, ZHONG Xiao-bin2, HE Chao1, WANG Xiao-xiao2, XU Qing-chi1*(), LI Jian-feng1,2*()
Received:
2019-03-18
Revised:
2019-04-05
Published:
2020-06-28
Online:
2019-04-08
Contact:
XU Qing-chi,LI Jian-feng
E-mail:xuqingchi@xmu.edu.cn;li@xmu.edu.cn
摘要:
本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料. 该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成. 将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 mA·g-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%. 进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.
中图分类号:
Support info: /attached/file/20200709/20200709110047_598.pdf
陈嘉卉, 钟晓斌, 何超, 王晓晓, 许清池, 李剑锋. 中空核壳结构Ni1.2Co0.8P@N-C钠离子电池负极材料的制备及拉曼研究[J]. 电化学(中英文), 2020, 26(3): 328-337.
CHEN Jia-hui, ZHONG Xiao-bin, HE Chao, WANG Xiao-xiao, XU Qing-chi, LI Jian-feng. Synthesis and Raman Study of Hollow Core-Shell Ni1.2Co0.8P@N-C as an Anode Material for Sodium-Ion Batteries[J]. Journal of Electrochemistry, 2020, 26(3): 328-337.
[1] |
Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001,414(6861):332-337.
doi: 10.1038/35104599 URL pmid: 11713539 |
[2] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657.
doi: 10.1038/451652a URL pmid: 18256660 |
[3] |
Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011,334(6052):75-79.
doi: 10.1126/science.1209150 URL pmid: 21903777 |
[4] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935.
doi: 10.1126/science.1212741 URL pmid: 22096188 |
[5] |
Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017,46(12):3529-3614.
doi: 10.1039/c6cs00776g URL pmid: 28349134 |
[6] | Zhao C L, Lu Y X, Li Y M, et al. Novel methods for sodium-ion battery materials[J]. Small Methods, 2017, 1(5): UNSP 1600063. |
[7] |
Wu C, Dou S X, Yu Y. The state and challenges of anode materials based on conversion reactions for sodium storage[J]. Small, 2018,14(22):1703671.
doi: 10.1002/smll.v14.22 URL |
[8] |
Lu Y, Li L, Zhang Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018,2(9):1747-1770.
doi: 10.1016/j.joule.2018.07.028 URL |
[9] | Wang Q, Zhao C, Lu Y, et al. Advanced nanostructured anode materials for sodium-ion batteries[J]. Small, 2017,13(42):1701835. |
[10] | Hou H S, Qiu X Q, Wei W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017,7(24):1602898. |
[11] | Zhang G R( 张广瑞), Hu L Q( 胡利强), Zhang B Z( 张宝珠). A new type carbon composited molybdenum doped vanadium oxide nanowires as a cathode material for sodium ion batteries[J]. Journal of Electrochemistryl( 电化学), 2017,23(4):456-465. |
[12] | Liu Y C( 刘永畅), Chen C C( 陈程成), Zhang N( 张宁). Research and application of key materials for sodium-ion batteries[J]. Journal of Electrochemistryl( 电化学), 2016,22(5):437-452. |
[13] | Yang F H, Gao H, Chen J, et al. Phosphorus-based materials as the anode for sodium-ion batteries[J]. Small Methods, 2017, 1(11): UNSP 1700216. |
[14] | Wu C, Kopold P, van Aken P A, et al. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design[J]. Advanced Materials, 2017,29(3):1604015. |
[15] | Fan M, Chen Y, Xie Y, et al. Na+ fuel cells: half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes [J]. Advanced Functional Materials, 2016,26(28):5002-5002. |
[16] | Li W J, Yang Q R, Chou S L, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources, 2015,294:627-632. |
[17] | Zhu J D, Chen C, Lu Y, et al. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon, 2015,94:189-195. |
[18] |
Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem, 2013,6(1):56-60.
URL pmid: 23225752 |
[19] |
Fu L J, Tang K, Song K P, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014,6(3):1384-1389.
URL pmid: 24306060 |
[20] | Liu H, Jia M Q, Cao B, et al. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability[J]. Journal of Power Sources, 2016,319:195-201. |
[21] | Dong C F, Guo L J, He Y Y, et al. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries[J]. Energy Storage Materials, 2018,15:234-241. |
[22] | Ge X L, Li Z Q, Yin L W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano Energy, 2017,32:117-124. |
[23] |
Baddour-Hadjean R, Pereira-Ramos J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chemical Reviews, 2009,110(3):1278-1319.
URL pmid: 19921829 |
[24] | Zhao L( 赵亮), Hu Y S( 胡勇胜), Li H( 李泓), et al. Applications of Raman spectroscopy technique in lithium ion batteries[J]. Journal of Electrochemistryl( 电化学), 2011,17(1):12-23. |
[25] |
Tripathi A M, Su W N, Hwang B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018,47(3):736-851.
doi: 10.1039/c7cs00180k URL pmid: 29308803 |
[26] |
Hardwick L J, Ruch P W, Hahn M, et al. In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects[J]. Journal of Physics and Chemistry of Solids, 2008,69(5/6):1232-1237.
doi: 10.1016/j.jpcs.2007.10.017 URL |
[27] |
Stancovski V, Badilescu S. In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview[J]. Journal of Applied Electrochemistry, 2014,44(1):23-43.
doi: 10.1007/s10800-013-0628-0 URL |
[28] | Zhong X B, Wang X X, Wang H Y, et al. Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation[J]. Nano Research, 2018,11(7):3814-3823. |
[29] | Hu Y M( 胡玉梅). Synthesis and energy storage characterization of high electrical conductive metal phosphide electrode material[D]. Lanzhou: Lanzhou University of Technology, 2017. |
[30] | Li Z Q, Zhang L Y, Ge X L, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017,32:494-502. |
[31] |
Miao X G, Yin R Y, Ge X L, et al. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries[J]. Small, 2017, 13(44): UNSP 1702138.
doi: 10.1002/smll.201701561 URL pmid: 28722318 |
[32] | Yang Q R, Li W J, Chou S L, et al. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery[J]. RSC Advances, 2015,5(98):80536-80541. |
[33] | Carmalt C J, Morrison D E, Parkin I P. Liquid-mediated metathetical synjournal of binary and ternary transition-metal pnictides[J]. Polyhedron, 2000,19(7):829-833. |
[34] | Ma L B, Shen X P, Zhou H, et al. CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015,3(10):5337-5343. |
[35] | Liu C L, Zhang G, Yu L, et al. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution[J]. Small, 2018,14(22):1800421. |
[36] | Tian J Q, Chen J, Liu J Y, et al. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting[J]. Nano Energy, 2018,48:284-291. |
[37] |
Chang J F, Feng L G, Liu C P, et al. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells[J]. Angewandte Chemie International Edition, 2014,53(1):122-126.
doi: 10.1002/anie.201308620 URL pmid: 24511636 |
[38] | Tuinstra F, Koenig J L. Characterization of graphite fiber surfaces with Raman spectroscopy[J]. Journal of Composite Materials, 1970,4(4):492-499. |
[39] | Hardwick L J, Buqa H, Holzapfel M, et al. Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: an in situ Raman and SEM study[J]. Electrochimica Acta, 2007,52(15):4884-4891. |
[40] | Inaba M, Yoshida H, Ogumi Z, et al. In situ Raman study on electrochemical Li intercalation into graphite[J]. Journal of The Electrochemical Society, 1995,142(1):20-26. |
[41] |
Lin X M, Diemant T, Mu X, et al. Spectroscopic investigations on the origin of the improved performance of composites of nanoparticles/graphene sheets as anodes for lithium ion batteries[J]. Carbon, 2018,127:47-56.
doi: 10.1016/j.carbon.2017.10.076 URL |
[42] | Kim H, Hong J, Park Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015,25(4):534-541. |
[43] |
Yun Y S, Park K Y, Lee B, et al. Sodium-ion storage in pyroprotein-based carbon nanoplates[J]. Advanced Materials, 2015,27(43):6914-6921.
URL pmid: 26421382 |
[44] | Qiu S, Xiao L, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017,7(17):1700403. |
[1] | 范佳琪, 宋焕巧, 安佳莹, 阿依达娜·阿曼太, 陈默. 碳限域Li3VO4纳米材料的制备及其储锂性能[J]. 电化学(中英文), 2023, 29(11): 211203-. |
[2] | 殷秀平, 赵玉峰, 张久俊. 钠离子电池硬碳基负极材料的研究进展[J]. 电化学(中英文), 2023, 29(10): 2204301-. |
[3] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[4] | 沈银飞, 陈艳丽, 王笙戌, 朱晔, 王文昌, 吴敏娴, 陈智栋. 酸性溶液中苯并三氮唑和3-巯基-1-丙烷磺酸钠在铜电极表面的电化学SERS研究[J]. 电化学(中英文), 2022, 28(6): 2104451-. |
[5] | 彭辉远, 王家正, 刘佳, 于欢欢, 林建德, 吴德印, 田中群. 纳米结构金电极上对氨基苯硫酚的电化学反应过程研究[J]. 电化学(中英文), 2022, 28(4): 2106281-. |
[6] | 兰道云, 屈小峰, 唐宇婷, 刘丽英, 刘军. 3.9 V电化学稳定窗口的乙酸盐电解液用于低成本高性能的水系钠离子电池[J]. 电化学(中英文), 2022, 28(1): 2102231-. |
[7] | 李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613. |
[8] | 吴丽文, 王玮, 黄逸凡. 应用镍超微电极的电化学表面增强拉曼光谱技术研究[J]. 电化学(中英文), 2021, 27(2): 208-215. |
[9] | 吴凯. Na3V2(PO4)2O2F的合成及其在钠离子电池中的应用[J]. 电化学(中英文), 2021, 27(1): 56-62. |
[10] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[11] | 苏敏, 董金超, 李剑锋. 单晶电极界面反应过程的电化学原位拉曼光谱研究[J]. 电化学(中英文), 2020, 26(1): 54-60. |
[12] | 凌 云, 汤 儆, 刘国坤, 宗 铖. 暂态电化学表面增强拉曼光谱研究对硝基苯硫酚分子的电化学还原过程[J]. 电化学(中英文), 2019, 25(6): 731-739. |
[13] | 王凡凡, 刘晓斌, 陈龙, 陈程成, 刘永畅, 范丽珍. 室温钠离子电池关键材料研究进展[J]. 电化学(中英文), 2019, 25(1): 55-76. |
[14] | 孙梦雷, 张达奇, 冯金奎, 倪江锋. 钒基电极材料研究进展[J]. 电化学(中英文), 2019, 25(1): 45-54. |
[15] | 颜冲, 寇华日, 颜波, 刘晓静, 李德军, 李喜飞. Ni/Mn3O4/NiMn2O4@RGO空心微球负极的制备及其储钠性能[J]. 电化学(中英文), 2019, 25(1): 112-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||