电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 270-280. doi: 10.13208/j.electrochem.190125
姚硕1,2, 黄太仲1,*(), RizwanHaider2, 房恒义1, 于洁玫1, 姜占坤1, 梁栋1, 孙玥1, 原鲜霞2,*()
收稿日期:
2019-01-25
修回日期:
2019-04-08
出版日期:
2020-04-28
发布日期:
2019-04-09
通讯作者:
黄太仲,原鲜霞
E-mail:chm_huangtz@ujn.edu.cn;yuanxx@sjtu.edu.cn
YAO Shuo1,2, HUANG Tai-zhong1,*(), HAIDER Rizwan2, FANG Heng-yi1, YU Jie-mei1, JIANG Zhan-kun1, LIANG Dong1, SUN Yue1, YUAN Xian-xia2,*()
Received:
2019-01-25
Revised:
2019-04-08
Published:
2020-04-28
Online:
2019-04-09
Contact:
HUANG Tai-zhong,YUAN Xian-xia
E-mail:chm_huangtz@ujn.edu.cn;yuanxx@sjtu.edu.cn
摘要:
为了促进燃料电池的广泛应用,必须研发一种高效、经济的氧还原(ORR)催化剂材料替代目前使用的昂贵的Pt基催化剂. 本文合成了NiO@rGO、Pd-NiO@rGO和Ag-NiO@rGO三种催化剂材料,并对其ORR催化性能进行了比较研究. 结果表明,三种材料均具有催化ORR的能力,但与NiO@rGO相比,Pd-NiO@rGO和Ag-NiO@rGO展示了更加优异的性能,主要表现在其4电子转移ORR过程、起始电位增加,中间产物的产率降低和稳定性提高. 其中,Pd-NiO@rGO作为ORR催化剂的性能最好.
中图分类号:
姚硕, 黄太仲, RizwanHaider, 房恒义, 于洁玫, 姜占坤, 梁栋, 孙玥, 原鲜霞. NiO@rGO负载钯、银纳米粒子用作氧还原催化剂[J]. 电化学(中英文), 2020, 26(2): 270-280.
YAO Shuo, HUANG Tai-zhong, HAIDER Rizwan, FANG Heng-yi, YU Jie-mei, JIANG Zhan-kun, LIANG Dong, SUN Yue, YUAN Xian-xia. NiO@rGO Supported Palladium and Silver Nanoparticles as Electrocatalysts for Oxygen Reduction Reaction[J]. Journal of Electrochemistry, 2020, 26(2): 270-280.
Tab. 1
Tafel slope b, electron transfer coefficient (α), exchange current density (i0), and transfer electron number (n) of Pd-NiO@rGO, Ag-NiO@rGO and NiO@rGO catalyzed ORR
Catalyst | b/(V·dec-1) | α | i0/(A·cm-2) | n |
---|---|---|---|---|
Pd-NiO@rGO | 0.078 | 0.0625 | 8.9×10-7 | 3.89 |
Ag-NiO@rGO | 0.220 | 0.0612 | 7.1×10-7 | 3.71 |
NiO@rGO | 0.105 | 0.0298 | 1.5×10-7 | 2.36 |
[1] | Liu Q, Zhang J Y . Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells[J]. Langmuir, 2013,29(11):3821-3828. |
[2] | Zhao Y, Ding Y, Qiao B , et al. Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions[J]. Journal of Materials Chemistry A, 2018,6(36):17771-17777. |
[3] |
Xue Q, Bai J, Han C C , et al. Au nanowires@Pd-polyethy-lenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media[J]. ACS Catalysis, 2018,8(12):11287-11295.
doi: 10.1021/acscatal.8b03447 URL |
[4] | Jayasayee K, Van Veen JAR, Manivasagam T G , et al. Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: Influence of particle size and non-noble metals[J]. Applied Catalysis B: Environmental, 2012,111:515-526. |
[5] |
Jennings P C, Pollet B G, Johnston R L . Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts[J]. Physical Chemistry Chemical Physics, 2012,14(9):3134-3139.
doi: 10.1039/c2cp23430k URL |
[6] |
Xu G R, Han C C, Zhu Y Y , et al. PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction[J]. Advanced Materials Interfaces, 2018,5(4):1701322.
doi: 10.1002/admi.v5.4 URL |
[7] |
Dong Y Y, Deng Y J, Zeng J H , et al. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. Journal of Materials Chemistry A, 2017,5(12):5829-5837.
doi: 10.1039/C6TA10496G URL |
[8] |
Xue Q, Xu G R, Mao R D , et al. Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction[J]. Journal of Energy Chemistry, 2017,26(6):1153-1159.
doi: 10.1016/j.jechem.2017.06.007 URL |
[9] |
Roche I, Chaînet E, Chatenet M , et al. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism[J]. The Journal of Physical Chemistry C, 2007,111(3):1434-1443.
doi: 10.1021/jp0647986 URL |
[10] | Zhou J, Xiao H, Zhou B W , et al. Hierarchical MoS2-rGO nanosheets with high MoS2 loading with enhanced electro-catalytic performance[J]. Applied Surface Science, 2015,358:152-158. |
[11] | Wu X Y, Gao X P, Xu L P , et al. Mn2O3 doping induced the improvement of catalytic performance for oxygen reduction of MnO[J]. International Journal of Hydrogen Energy, 2016,41(36):16087-16093. |
[12] |
Xiao M L, Zhu J B, Ma L , et al. Microporous framework induced synjournal of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy[J]. ACS Catalysis, 2018,8(4):2824-2832.
doi: 10.1021/acscatal.8b00138 URL |
[13] | Cai P W, Peng X X, Huang J H , et al. Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery[J]. Science China Chemistry, 2019,62(3):385-392. |
[14] | Lin Y, Chai G L, Wen Z H . Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction[J]. Advanced Functional Materials, 2017,27(14):1606190. |
[15] | Xia W, Qu C, Liang Z B , et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J]. Nano Letters, 2017,17(5):2788-2795. |
[16] | Song P( 宋平), Ruan M B( 阮明波), Liu J( 刘京 ), et al. Recent research for non-Pt-based oxygen reduction reaction electrocatalysts in fuel cell[J]. Journal of Electrochemistry( 电化学), 2015,21(2):130-137. |
[17] | Cai P W, Li Y, Wang G X , et al. Alkaline-acid Zn-H2O fuel cell for simultaneous generation of hydrogen and electricity[J]. Angewandte Chemie International Edition, 2018,57(15):3910-3915. |
[18] | Osgood H, Devaguptapu S V, Xu H , et al. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media[J]. Nano Today, 2016,11(5):601-625. |
[19] | Kalantar-Zadeh K, Ou J Z, Daeneke T , et al. Two dimensional and layered transition metal oxides[J]. Applied Materials Today, 2016,5:73-89. |
[20] | Wang D C, Huang N B, Sun Y , et al. GO clad Co3O4 (Co3O4@GO) as ORR catalyst of anion exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017,42(31):20216-20223. |
[21] | Kumar K, Canaff C, Rousseau J , et al. Effect of the oxide-carbon heterointerface on the activity of Co3O4/NRGO nanocomposites towards ORR and OER[J]. Journal of Physical Chemistry C, 2016,120(15):7949-7958. |
[22] | Amin R S, Hameed R M A, El-Khatib K M , et al. Pt-NiO/C anode electrocatalysts for direct methanol fuel cells[J]. Electrochimica Acta, 2012,59:499-508. |
[23] | Tong S F, Zheng M B, Lu Y , et al. Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li-O2 batteries[J]. Journal of Materials Chemistry A, 2015,3(31):16177-16182. |
[24] | Xu X B, Liu Z H, Zuo Z X , et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode[J]. Nano Letters, 2015,15(4):2402-2408. |
[25] | Zhao J, Yu H, Liu Z S , et al. Supercritical deposition route of preparing Pt/graphene composites and their catalytic performance toward methanol electrooxidation[J]. Journal of Physical Chemistry C, 2014,118(2):1182-1190. |
[26] | Geng D, Ding N, Hor T S A , et al. Potential of metal-free “graphene alloy” as electrocatalysts for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015,3(5):1795-1810. |
[27] | Higgins D, Zamani P, Yu A , et al. The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress[J]. Energy & Environmental Science, 2016,9(2):357-390. |
[28] | Sun M, Liu H J, Liu Y , et al. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction[J]. Nanoscale, 2015,7(4):1250-1269. |
[29] | Xiu L Y( 修陆洋), Yu M Z( 于梦舟), Yang P J( 杨鹏举 ), et al. Caging porous Co-N-C nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. Journal of Electrochemistry( 电化学), 2018,24(6):715-725. |
[30] | Li X J, Fan L l, Li X F , et al. Enhanced anode performance of flower-like NiO/RGO nanocomposites for lithium-ion batteries[J]. Materials Chemistry and Physics, 2018,217:547-552. |
[31] | Yu S P, Liu Q B, Yang W S , et al. Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells[J]. Electrochimica Acta, 2013,94:245-251. |
[32] |
Ji Z Y, Shen X P, Yang J L , et al. A novel reduced grap-hene oxide/Ag/CeO2 ternary nanocomposite: Green synjournal and catalytic properties[J]. Applied Catalysis B: Environmental, 2014,144:454-461.
doi: 10.1016/j.apcatb.2013.07.052 URL |
[33] | Hummers W S, Offeman R E . Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958,80(6):1339. |
[34] | Chang K, Chen W X . L-cysteine-assisted synjournal of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011,5(6):4720-4728. |
[35] | Wen M, Sun B L, Zhou B , et al. Controllable assembly of Ag/C/Ni magnetic nanocables and its low activation energy dehydrogenation catalysis[J]. Journal of Materials Chemistry, 2012,22(24):11988-11993. |
[36] | Wanger C D, Riggs W M, Davis L E , et al. Handbook of X-ray photoelectron spectroscopy[M]. Minnesota: Perkin-Elmer Corp., Physical Electronics Division, 1979. |
[37] | Zhang J, Liu H L, Wang B , et al. Preparation of Pd/GO/Ti electrode and its electrochemical degradation for 2,4-dich-lorophenol[J]. Materials & Design, 2015,86(Supplement C):664-669. |
[38] |
Kahri H, Sevim M . Enhanced catalytic activity of mono-dispersed AgPd alloy nanoparticles assembled on mesoporous graphitic carbon nitride for the hydrolytic dehydrogenation of ammonia borane under sunlight[J]. Nano Research, 2017,10(5):1627-1640.
doi: 10.1007/s12274-016-1345-x URL |
[39] |
Zhao X H, Liu X . A novel magnetic NiFe2O4@graphene-Pd multifunctional nanocomposite for practical catalytic application[J]. RSC Advances, 2015,5(97):79548-79555.
doi: 10.1039/C5RA12720C URL |
[40] | Yang L, Luo W, Cheng G Z . Graphene-supported ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. ACS Applied Materials & Interfaces, 2013,5(16):8231-8240. |
[41] | Gong K P, Du F, Xia Z H , et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323(5915):760-764. |
[42] | Wei Y C, Liu C W, Wang K W . Improvement of oxygen reduction reaction and methanol tolerance characteristics for PdCo electrocatalysts by Au alloying and CO treatment[J]. Chemical Communications, 2011,47(43):11927-11929. |
[43] | Alexiadis A, Cornell A, Dudukovic M P . Comparison between CFD calculations of the flow in a rotating disk cell and the Cochran/Levich equations[J]. Journal of Electroanalytical Chemistry, 2012,669(1):55-66. |
[44] |
Gu W L, Hu L Y, Hong W , et al. Noble-metal-free Co3S4-S/G porous hybrids as an efficient electrocatalyst for oxygen reduction reaction[J]. Chemical Science, 2016,7(7):4167-4173.
doi: 10.1039/C6SC00357E URL |
[45] |
Nakabayashi S, Yagi I, Sugiyama N , et al. Reaction pathway of four-electron oxidation of formaldehyde on platinum electrode as observed by in situ optical spectroscopy[J]. Surface Science, 1997,386(1/3):82-88.
doi: 10.1016/S0039-6028(97)00329-4 URL |
[46] |
Chang H C, Han C K, Yook S , et al. Hydrogen peroxide synjournal via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J]. Journal of Physical Chemistry C, 2014,118(51):30063-30070.
doi: 10.1021/jp5113894 URL |
[47] | Yin Z, Zhang Y N, Chen K , et al. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation[J]. Scientific Reports, 2014,4:4288. |
[1] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[2] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[3] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[4] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[5] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[6] | 温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001-. |
[7] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[8] | 马恩辉, 刘旭坡, 申涛, 王得丽. 醇盐自模板法构筑碳封装NiFeV基电催化剂用于析氧反应[J]. 电化学(中英文), 2023, 29(11): 211103-. |
[9] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[10] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[11] | 王健, 轩文辉, 何倩, 蒋金霞, 周圆圆, 聂瑶, 廖强, 邵敏华, 丁炜, 魏子栋. 类超晶格结构:有序性传质赋予燃料电池高品质输出性能[J]. 电化学(中英文), 2023, 29(1): 2215003-. |
[12] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[13] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[14] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[15] | 崔爱林, 白洋, 俞宏英, 孟惠民. Pt/TiO2-CNx催化剂中纳米TiO2 (A)/(R)相含量的电催化“火山形”效应[J]. 电化学(中英文), 2022, 28(5): 2110021-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||