电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 262-269. doi: 10.13208/j.electrochem.181001
收稿日期:
2018-10-01
修回日期:
2018-11-29
出版日期:
2020-04-28
发布日期:
2018-11-29
通讯作者:
杨勇
E-mail:yyang@xmu.edu.cn
基金资助:
MA Jia-lin, WANG Hong-chun, GONG Zheng-liang, YANG Yong*()
Received:
2018-10-01
Revised:
2018-11-29
Published:
2020-04-28
Online:
2018-11-29
Contact:
YANG Yong
E-mail:yyang@xmu.edu.cn
摘要:
本文通过在锂负极中熔入少量铝制备了一种含Al-Li合金(Al4Li9)的新型复合锂负极,可有效改善Garnet/金属锂界面润湿性,从而显著降低了界面阻抗. XRD研究结果表明这一复合锂负极由Al4Li9合金和金属锂两相复合而成. SEM研究表明,复合锂负极可以有效改善金属锂与Garnet电解质的界面接触,形成更为紧密的接触界面. 电化学测试表明,复合锂负极显著降低了金属锂与Garnet电解质的界面阻抗,界面阻抗由锂/Garnet电解质界面的740.6 Ω·cm 2降低到复合锂负极/Garnet电解质界面的75.0 Ω·cm 2. 使用复合锂负极制备的对称电池在50 μA·cm -2和100 μA·cm -2电流密度锂沉积-溶出过程中表现出较低的极化和良好的循环稳定性,在50 μA·cm -2电流密度下,可以稳定循环超过400小时.
中图分类号:
Support info: 支持信息
马嘉林, 王红春, 龚正良, 杨勇. 石榴石型固态电解质/铝锂合金界面构筑及电化学性能[J]. 电化学(中英文), 2020, 26(2): 262-269.
MA Jia-lin, WANG Hong-chun, GONG Zheng-liang, YANG Yong. Construction and Electrochemical Performance of Garnet-Type Solid Electrolyte/Al-Li Alloy Interface[J]. Journal of Electrochemistry, 2020, 26(2): 262-269.
[1] | Ni J E, Case E D, Sakamoto J S , et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. Journal of Materials Science, 2012,47(23):7978-7985. |
[2] | Li H( 李泓), Lü Y C( 吕迎春 ). A review on electrochemical energy storage[J]. Journal of Electrochemistry( 电化学), 2015,21(5):412-424. |
[3] | Hong H P . Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li + superionic conductors [J]. Materials Research Bulletin, 1978,13(2):117-124. |
[4] | Thokchom J S, Kumar B . Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic[J]. Journal of Power Sources, 2008,185(1):480-485. |
[5] | Bohnke O . The fast lithium-ion conducting oxides Li3xLa2/3-xTiO2 from fundamentals to application[J]. Solid State Ionics, 2008,179(1):9-15. |
[6] | Kato Y, Hori S, Saito T , et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016,1(4):16030. |
[7] | Zheng B Z, Zhu J P, Wang H C , et al. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2018,10(30):25473-25482. |
[8] | Murugan R, Thangadurai V, Weppner W . Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007,46(41):7778-7781. |
[9] | Liu T, Ren Y Y, Shen Y , et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. Journal of Power Sources, 2016,324:349-357. |
[10] | Dhivya L, Janani N, Palanivel B , et al. Li + transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets [J]. AIP Advances, 2013,3(8):082115. |
[11] | Deviannapoorani C, Dhivya L, Ramakumar S , et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Journal of Power Sources, 2013,240:18-25. |
[12] | Liu K, Wang C A . Garnet-type Li6.4La3Zr1.4Ta0.6O12 thin sheet: Fabrication and application in lithium-hydrogen peroxide semi-fuel cell[J]. Electrochemistry Communications, 2014,48:147-150. |
[13] | Thangadurai V, Narayanan S, Pinzaru D . Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chemical Society Reviews, 2014,43(13):4714-4727. |
[14] | Ren Y Y, Shen Y, Lin Y H , et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015,57:27-30. |
[15] | Sudo R, Nakata Y, Ishiguro K , et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal[J]. Solid State Ionics, 2014,262:151-154. |
[16] | Tsai C L, Roddatis V, Chandran C V , et al. Li7La3Zr2O12 interface modification for Li dendrite prevention[J]. ACS Applied Materials & Interfaces, 2016,8(16):10617-10626. |
[17] | Luo W, Gong Y H, Zhu Y Z , et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016,138(37):12258-12262. |
[18] | Matsuyama T, Takano R, Tadanaga K , et al. Fabrication of all-solid-state lithium secondary batteries with amorphous TiS4 positive electrodes and Li7La3Zr2O12 solid electrolytes[J]. Solid State Ionics, 2015,285(1):332-335. |
[19] | Shao Y J, Wang H C, Gong Z L , et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Letters, 2018,3(6):1212-1218. |
[20] | Wang D, Zhong G, Pang W K , et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li + ion exchanges and their mobility at octahedral/tetrahedral sites [J]. Chemistry of Materials, 2015,27(19):6650-6659. |
[21] | Tang R Z( 唐仁政), Tian R Z( 田荣璋 ). Binary alloy phase diagram and crystal structure of mesophase[M]. Changsha: Central South University Press( 中南大学出版社), 2009. |
[22] | Li Y, Wang Z, Cao Y , et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Electrochim-ica Acta, 2015,180:37-42. |
[23] | Thangadurai V, Weppner W . Li6ALa2Ta2O12 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials, 2005,15(1):107-112. |
[24] | Han X G, Gong Y H, Fu K , et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2016,16(5):572-579. |
[25] | Ishiguro K, Nakata Y, Matsui M , et al. Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal[J]. Journal of The Electrochemical Society, 2013,160(10):A1690-A1693. |
[26] | Jin Y, Mcginn P J . Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery[J]. Journal of Power Sources, 2013,239:326-331. |
[27] | Sharafi A, Meyer H M, Nanda J , et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016,302:135-139. |
[28] | Ohta S, Kobayashi T, Seki J , et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. Journal of Power Sources, 2012,202:332-335. |
[29] | Wang C W, Gong Y H, Liu B Y , et al. Conformal, nano-scale ZnO surface modification of Garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017,17(1):565-571. |
[1] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[2] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[3] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[4] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[5] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[6] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[7] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[8] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[9] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[10] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[11] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[12] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[13] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[14] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[15] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||