[1] Kammen DM, Sunter DA. City-integrated renewable energy for urban sustainability[J]. Science, 2016, 352(6288): 922-928.
[2] Stevenson AJ, Gromadskyi DG, Hu D et al. Supercapatteries with Hybrids of Redox Active Polymers and Nanostructured Carbons. Nanocarbons for Advanced Energy Storage. Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 179-210.
[3] Grey CP, Tarascon JM. Sustainability and in situ monitoring in battery development[J]. Nat Mater, 2017, 16(1): 45-56.
[4] Liu W, Song MS, Kong B et al. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives[J]. Advanced Materials, 2017, 29(1): 1603436.
[5] Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.
[6] Wang Y, Zhong WH. Development of Electrolytes towards Achieving Safe and High‐Performance Energy‐Storage Devices: A Review[J]. ChemElectroChem, 2015, 2(1): 22-36.
[7] Zhang K, Han X, Hu Z et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion[J]. Chemical Society Reviews, 2015, 44(3): 699-728.
[8] Salanne M, Rotenberg B, Naoi K et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1: 16070.
[9] Wen L, Li F, Cheng HM. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices[J]. Advanced Materials, 2016, 28(22): 4306-4337.
[10] Yu LP, Chen GZ. High energy supercapattery with an ionic liquid solution of LiClO4[J]. Faraday Discussions, 2016, 190: 231-240.
[11] Yu LP, Chen GZ. Redox electrode materials for supercapatteries[J]. Journal of Power Sources, 2016, 326: 604-612.
[12] Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores[J]. International Materials Reviews, 2017, 62(4): 173-202.
[13] Guan L, Yu L, Chen GZ. Capacitive and non-capacitive faradaic charge storage[J]. Electrochimica acta, 2016, 206: 464-478.
[14] Carlberg JC, Inganas O. Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144(4): L61-L64.
[15] Li H, Wang J, Chu Q et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. Journal of Power Sources, 2009, 190(2): 578-586.
[16] Zhu M, Huang Y, Huang Y et al. A Highly Durable, Transferable, and Substrate-Versatile High-Performance All-Polymer Micro-Supercapacitor with Plug-and-Play Function[J]. Advanced Materials, 2017, 29(16): 1605137-n/a.
[17] Shen C, Wang C-P, Sanghadasa M et al. Flexible micro-supercapacitors prepared using direct-write nanofibers[J]. Rsc Advances, 2017, 7(19): 11724-11731.
[18] Wang X, Xu M, Fu Y et al. A Highly Conductive and Hierarchical PANI Micro/nanostructure and Its Supercapacitor Application[J]. Electrochimica acta, 2016, 222: 701-708.
[19] Zhao Z, Xie Y. Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid[J]. Journal of Power Sources, 2017, 337: 54-64.
[20] Itoi H, Hayashi S, Matsufusa H et al. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors[J]. Chemical Communications, 2017, 53(22): 3201-3204.
[21] Chen GZ, Shaffer MSP, Coleby D et al. Carbon nanotube and polypyrrole composites: Coating and doping[J]. Advanced Materials, 2000, 12(7): 522-526.
[22] Hughes M, Chen GZ, Shaffer MSP et al. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole[J]. Chemistry of Materials, 2002, 14(4): 1610-1613.
[23] Hughes M, Shaffer MSP, Renouf AC et al. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole[J]. Advanced Materials, 2002, 14(5): 382-385.
[24] Snook GA, Chen GZ, Fray DJ et al. Studies of deposition of and charge storage in polypyrrole-chloride and polypyrrole-carbon nanotube composites with an electrochemical quartz crystal microbalance[J]. Journal of Electroanalytical Chemistry, 2004, 568(1-2): 135-142.
[25] Wu MQ, Snook GA, Gupta V et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline[J]. Journal of Materials Chemistry, 2005, 15(23): 2297-2303.
[26] Peng C, Snook GA, Fray DJ et al. Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly 3,4-ethylene-dioxythiophene[J]. Chemical Communications, 2006, (44): 4629-4631.
[27] Snook GA, Peng C, Fray DJ et al. Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films[J]. Electrochemistry communications, 2007, 9(1): 83-88.
[28] Snook GA, Chen GZ. The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance[J]. Journal of Electroanalytical Chemistry, 2008, 612(1): 140-146.
[29] Peng C, Jin J, Chen GZ. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes[J]. Electrochimica acta, 2007, 53(2): 525-537.
[30] Peng C, Zhang SW, Zhou XH et al. Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors[J]. Energy & Environmental Science, 2010, 3(10): 1499-1502.
[31] Zhou XH, Peng C, Chen GZ. 20 V stack of aqueous supercapacitors with carbon (-), titanium bipolar plates and CNT-polypyrrole composite (+)[J]. Aiche Journal, 2012, 58(3): 974-983.
[32] Zhou X, Chen GZ. Electrochemical Performance of Screen-Printed Composite Coatings of Conducting Polymers and Carbon Nanotubes on Titanium Bipolar Plates in Aqueous Asymmetrical Supercapacitors[J]. Journal of Electrochemistry, 2012, 18(6): 548-565.
[33] Cherusseri J, Kar KK. Polypyrrole-decorated 2D carbon nanosheet electrodes for supercapacitors with high areal capacitance[J]. Rsc Advances, 2016, 6(65): 60454-60466.
[34] Wang HW, Zhang Y, Sun WP et al. Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties[J]. Journal of Power Sources, 2016, 307: 17-24.
[35] Bleda-Martinez MJ, Peng C, Zhang SG et al. Electrochemical methods to enhance the capacitance in activated carbon/polyaniline composites[J]. Journal of the Electrochemical Society, 2008, 155(9): A672-A678.
[36] Jian X, Li JG, Yang HM et al. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors[J]. Carbon, 2017, 114: 533-543.
[37] Dai ZX, Peng C, Chae JH et al. Cell voltage versus electrode potential range in aqueous supercapacitors[J]. Scientific Reports, 2015, 5.
[38] Trasatti S, Buzzanca G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29(2): A1-A5.
[39] Zheng JP, Cygan PJ, Jow TR. HYDROUS RUTHENIUM OXIDE AS AN ELECTRODE MATERIAL FOR ELECTROCHEMICAL CAPACITORS[J]. Journal of the Electrochemical Society, 1995, 142(8): 2699-2703.
[40] Zheng JP. Ruthenium oxide-carbon composite electrodes for electrochemical capacitors[J]. Electrochemical and Solid State Letters, 1999, 2(8): 359-361.
[41] Pang SC, Anderson MA, Chapman TW. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society, 2000, 147(2): 444-450.
[42] Wu MQ, Snook GA, Chen GZ et al. Redox deposition of manganese oxide on graphite for supercapacitors[J]. Electrochemistry communications, 2004, 6(5): 499-504.
[43] Jin X, Zhou W, Zhang S et al. Nanoscale microelectrochemical cells on carbon nanotubes[J]. Small, 2007, 3(9): 1513-1517.
[44] Ng KC, Zhang SW, Peng C et al. Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs/SnO(2) and CNTs/MnO(2) Nanocomposites[J]. Journal of the Electrochemical Society, 2009, 156(11): A846-A853.
[45] Zhang SW, Peng C, Ng KC et al. Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks[J]. Electrochimica acta, 2010, 55(25): 7447-7453.
[46] Liu ZN, Xu KL, Sun H et al. One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors[J]. Small, 2015, 11(18): 2182-2191.
[47] Zhang F, Zhang TF, Yang X et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density[J]. Energy & Environmental Science, 2013, 6(5): 1623-1632.
[48] Chae JH, Chen GZ. 1.9 V aqueous carbon-carbon supercapacitors with unequal electrode capacitances[J]. Electrochimica acta, 2012, 86: 248-254.
[49] Bichat MP, Raymundo-Piñero E, Béguin F. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte[J]. Carbon, 2010, 48(15): 4351-4361.
[50] Demarconnay L, Raymundo-Piñero E, Béguin F. A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution[J]. Electrochemistry communications, 2010, 12(10): 1275-1278.
[51] Gromadskyi DG, Chae JH, Norman SA et al. Correlation of energy storage performance of supercapacitor with iso-propanol improved wettability of aqueous electrolyte on activated carbon electrodes of various apparent densities[J]. Applied Energy, 2015, 159: 39-50.
[52] Makino S, Shinohara Y, Ban T et al. 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity[J]. Rsc Advances, 2012, 2(32): 12144-12147. |