欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2017, Vol. 23 ›› Issue (5): 533-547.  doi: 10.13208/j.electrochem.170347

• 超级电容器近期研究专辑(南京航空航天大学 张校刚教授主编) • 上一篇    下一篇

提高电容性电化学储能装置能量容量的一些尝试

余林颇1,陈政1,2*   

  1. 1. 宁波诺丁汉大学,理工学院化学与环境工程及可持续能源技术研究中心,宁波 315100 2. 诺丁汉大学,工程学部化学与环境工程系,英国,诺丁汉 NG7 2RD
  • 收稿日期:2017-04-20 修回日期:2017-07-07 出版日期:2017-10-28 发布日期:2017-10-28
  • 通讯作者: 陈政 E-mail:george.chen@nottingham.edu.cn
  • 基金资助:
    浙江省科技计划项目-公益技术应用研究(2017C31104, 2016C31023)和宁波市科技计划(“3315计划”, 2014A35001-1, 2016A610115)资助

Attempts to Improve the Energy Capacity of Capacitive Electrochemical Energy Storage Devices

YU Lin-po1, George Z. CHEN 1,2*   

  1. 1. Department of Chemical and Environmental Engineering, and Centre for Sustainable Energy Technologies, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, Zhejiang, China 2. Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
  • Received:2017-04-20 Revised:2017-07-07 Published:2017-10-28 Online:2017-10-28
  • Contact: George Z. CHEN E-mail:george.chen@nottingham.edu.cn
  • Supported by:
    This work has received funding supports from Ningbo Municipal Government (3315 Plan and IAMET Special Fund, 2014A35001-1, and Ningbo Natural Science Foundation Programme, 2016A610115) and Zhejiang Provincial Applied Research Programme for Commonweal Technology, 2016C31023 and 2017C31104.

摘要: 本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展. 导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能. 活性炭和碳黑等一类碳材料则可作为非法拉第储能的电极材料. 通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量. 此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求. 超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.

关键词: 超级电容器, 超级电容池, 赝电容, 碳纳米管, 活性炭.

Abstract: This article reviews selected literatures from the authors’ research group on the development of capacitive electrochemical energy storage (EES) devices, focusing on supercapacitors and supercapatteries at both the electrode material level and device level. Electronically conducting polymers (ECPs) and transition metal oxides (TMOs) composited with carbon nanotubes (CNTs) were found to be able to improve the capacitance performance as capacitive faradaic storage electrode. Carbon materials, like activated carbon (Act-C) and carbon black, were used to fabricate non-faradaic capacitive storage electrode. It was found that the electrode capacitance balance can effectively extend the maximum charging voltage (MCV) of the supercapacitor, and hence, to enhance the energy capacity of this capacitive EES device. The MCV of this kind of device can also be multiplied by bipolarly stacking the supercapacitors to meet the high voltage demand from the power device. Supercapatteries that take advantages of both capacitive and faradaic charge storage mechanisms have been proposed and demonstrated to achieve the high power capability of supercapacitors and the large storage capacity of batteries.

中图分类号: