[1] Simon P, Gogotsi, Y. Materials for electrochemical capacitors[J]. Nature materials, 2008, 7(11): 845-854.
[2] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[3] Zhang Y, Feng, H, Wu, X B, et al. Progress of electrochemical capacitor electrode materials: A review[J]. International journal of hydrogen energy, 2009, 34(11): 4889-4899.
[4] Miller J R, Simon, P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889): 651-652.
[5] Pandolfo A G, Hollenkamp, A F. Carbon properties and their role in supercapacitors[J]. Journal of power sources, 2006, 157(1): 11-27.
[6] Fernández J A, Arulepp M, Leis J, et al. EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes[J]. Electrochimica Acta, 2008, 53(24): 7111-7116.
[7] Fan L Z, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors[J]. Electrochemistry communications, 2006, 8(6): 937-940.
[8] Hou Y, Cheng Y W, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J]. Nano letters, 2010, 10(7): 2727-2733.
[9] Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites[J]. Journal of Power Sources, 2006, 153(2): 413-418.
[10] Nagarajan N, Humadi H, Zhitomirsky I. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors[J]. Electrochimica Acta, 2006, 51(15): 3039-3045.
[11] Xu Y, Tao Y, Zheng X Y, et al. A Metal‐Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm−3[J]. Advanced materials, 2015, 27(48): 8082-8087.
[12] Jiang J, Li Y Y, Liu J P, et al. Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage[J]. Advanced materials, 2012, 24(38): 5166-5180.
[13] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
[14] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.
[15] Yang Z B, Ren J, Zhang Z T, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical reviews, 2015, 115(11): 5159-5223.
[16] Simon P, Gogotsi, Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J]. Accounts of chemical research, 2012, 46(5): 1094-1103.
[17] Titirici M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290.
[18] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
[19] Smalley R E, Dresselhaus M S, Dresselhaus G, et al. Carbon nanotubes: synthesis, structure, properties, and applications[M]. Springer Science & Business Media, 2003.
[20] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced materials, 2011, 23(42): 4828-4850.
[21] Liu C G, Yu Z N, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano letters, 2010, 10(12): 4863-4868.
[22] Barranco V, Lillo-Rodenas M A, Linares-Solano A, et al. Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes[J]. The Journal of Physical Chemistry C, 2010, 114(22): 10302-10307.
[23] Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.
[24] Raymundo-Pinero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12): 2498-2507.
[25] Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403.
[26] Masarapu C, Wang L P, Li X, et al. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure[J]. Advanced Energy Materials, 2012, 2(5): 546-552.
[27] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
[28] Wennerberg A N, O'grady T M. Active carbon process and composition. Google Patents 1978.
[29] Marsh H, Reinoso F R. Activated carbon: Elsevier; 2006.
[30] Otowa T, Tanibata R, Itoh M. Production and adsorption characteristics of MAXSORB: high-surface-area active carbon[J]. Gas separation & purification, 1993, 7(4): 241-245.
[31] Lozano-Castello D, Calo, J M, Cazorla-Amoros, D, et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536.
[32] Raymundo-Pinero E, Azais, P, Cacciaguerra, T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795.
[33] Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725.
[34] Romanos J, Beckner M, Rash T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2011, 23(1): 015401.
[35] Xia J L, Chen F, Li J H, et al. Measurement of the quantum capacitance of graphene[J]. Nature nanotechnology, 2009, 4(8): 505-509.
[36] Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials, 2007, 6(3): 183-191.
[37] Yan J, Fan Z J, Sun W, et al. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density[J]. Advanced Functional Materials, 2012, 22(12): 2632-2641.
[38] Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced materials, 2010, 22(35): 3906-3924.
[39] Murali S, Potts J R, Stoller S, et al. Preparation of activated graphene and effect of activation parameters on electrochemical capacitance[J]. Carbon, 2012, 50(10): 3482-3485.
[40] Tsai W Y, Lin R Y, Murali S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from− 50 to 80 C[J]. Nano Energy, 2013, 2(3): 403-411.
[41] Gamby J, Taberna P, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of power sources, 2001, 101: 109-116
[42] Zhang L, Zhang F, Yang X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Scientific reports, 2013, 3: 1408
[43] Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage[J]. Science, 2011, 334(6058): 917-918.
[44] Wu S L, Zhu Y W. Highly densified carbon electrode materials towards practical supercapacitor devices[J]. Science China Materials, 2017, 60(1): 25-38.
[45] Murali S, Quarles N, Zhang L L, et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes[J]. Nano Energy, 2013, 2(5): 764-768.
[46] Wu S L, Chen G X, Kim N Y, et al. Creating Pores on Graphene Platelets by Low‐Temperature KOH Activation for Enhanced Electrochemical Performance[J]. Small, 2016, 12(17): 2376-2384.
[47] Zhao X, Zhang L L, Murali S, et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors[J]. ACS nano, 2012, 6(6): 5404-5412.
[48] Nam K W, Kim K B. Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2006, 153(1): A81-A88.
[49] Jin X B, Zhou W Z, Zhang S W, et al. Nanoscale microelectrochemical cells on carbon nanotubes[J]. Small, 2007, 3(9): 1513-1517.
[50] Lang X Y, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232-236.
[51] Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4).
[52] Xu J, Tan Z Q, Zeng W C, et al. A Hierarchical Carbon Derived from Sponge‐Templated Activation of Graphene Oxide for High‐Performance Supercapacitor Electrodes[J]. Advanced Materials, 2016, 28(26): 5222-5228.
[53] Qie L, Chen W M, Xu H H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science, 2013, 6(8): 2497-2504.
[54] Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high‐rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition, 2008, 47(2): 373-376.
[55] Zhang L L, Zhao X, Stoller M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J]. Nano letters, 2012, 12(4): 1806-1812.
[56] Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29): 5983-5992.
[57] Zhu Y W, Murali S, Stoller M D, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J]. Carbon, 2010, 48(7): 2118-2122.
[58] Wood K N, O'Hayre R, Pylypenko S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications[J]. Energy & Environmental Science, 2014, 7(4): 1212-1249.
[59] Lota G, Grzyb B, Machnikowska H, et al. Effect of nitrogen in carbon electrode on the supercapacitor performance[J]. Chemical Physics Letters, 2005, 404(1): 53-58.
[60] Ji H X, Zhao X, Qiao Z H, et al. Capacitance of carbon-based electrical double-layer capacitors[J]. Nature communications, 2014, 5.
[61] Zhang L L, Zhao X, Ji H X, et al. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon[J]. Energy & Environmental Science, 2012, 5(11): 9618-9625.
[62] Tan Z Q, Ni K, Chen G X, et al. Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C60 Molecules to Obtain Superior Energy Storage[J]. Advanced Materials, 2016.
[63] Zheng S S, Ju H, Lu X. A High‐Performance Supercapacitor Based on KOH Activated 1D C70 Microstructures[J]. Advanced Energy Materials, 2015, 5(22).
[64] Chen G X, Wu S L, Hui L W, et al. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes[J]. Scientific reports, 2016, 6.
[65] Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications[J]. Energy & Environmental Science, 2011, 4(5): 1592-1605.
[66] Futaba D N, Hata K, Yamada T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature materials, 2006, 5(12): 987-994.
[67] Xu B, Wu F, Su Y F, et al. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: balance between porosity and conductivity[J]. Electrochimica Acta, 2008, 53(26): 7730-7735.
[68] Jiang Q, Qu M Z, Zhang B L, et al. Preparation of activated carbon nanotubes[J]. Carbon, 2002, 40(14): 2743-2745.
[69] Ye J L, Wu S L, Ni K, et al. Diameter‐sensitive breakdown of single‐walled carbon nanotubes upon KOH activation[J]. ChemPhysChem, 2017.
[70] Jagannathan S, Chae H G, Jain R, et al. Structure and electrochemical properties of activated polyacrylonitrile based carbon fibers containing carbon nanotubes[J]. Journal of Power Sources, 2008, 185(2): 676-684. |