[1] G. Crabtree. Perspective: The energy-storage revolution[J]. Nature, 2015, 526(7575): 92-92.
[2] M. Armand, J. M. Tarascon. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[3] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[6] X. Feng, M. Fang, X. He, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.
[7] Yamaki J, Baba Y, Katayama N, et al. Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode[J]. Journal of power sources, 2003, 119: 789-793.
[8] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100.
[9] M. Baginska, B. J. Blaiszik, R. J. Merriman, et al. Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microspheres[J]. Advanced Energy Materials, 2012, 2(5): 532-535.
[10]W. Ji, B. Jiang, F. Ai, et al. Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries[J]. RSC Advances, 2015, 5(1): 172-176.
[15]A. Abouimrane, S. A. Odom, H. Tavassol, et al. 3-Hexylthiophene as a stabilizing additive for high voltage cathodes in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(2): A268-A271. |